Answer:
-(5 n + 6)
Step-by-step explanation:
Simplify the following:
-4 (n + 1) - (n + 2)
-4 (n + 1) = -4 n - 4:
-4 n - 4 - (n + 2)
-(n + 2) = -n - 2:
-4 - 4 n + -n - 2
Grouping like terms, -4 - 4 n - 2 - n = (-4 n - n) + (-4 - 2):
(-4 n - n) + (-4 - 2)
-4 n - n = -5 n:
-5 n + (-4 - 2)
-4 - 2 = -(4 + 2):
-5 n + -(4 + 2)
4 + 2 = 6:
-5 n - 6
Factor -1 out of -5 n - 6:
Answer: -(5 n + 6)
Answer:
still need it?...........
Answer: Picture is blury for me I can not see it well enough
Step-by-step explanation:
All i see is the 8 ft and 17ft cant see any of the other numbers
D is halfway between A and B
so the coordinates of D are (2,2)
E is halfway between A and C so the coordinates of E are (-1,1)
now you need to find the gradient/slope of DE and BC using the formula:

<h3>
<u>G</u><u>r</u><u>a</u><u>d</u><u>i</u><u>e</u><u>n</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>D</u><u>E</u><u>:</u><u> </u></h3>
SUB IN COORDINATES OF D AND E

therefore the gradient of DE is 1/3.
<h3>
<u>G</u><u>r</u><u>a</u><u>d</u><u>i</u><u>e</u><u>n</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>B</u><u>C</u><u>:</u></h3>
<em>S</em><em>U</em><em>B</em><em> </em><em>I</em><em>N</em><em> </em><em>C</em><em>O</em><em>O</em><em>R</em><em>D</em><em>I</em><em>N</em><em>A</em><em>T</em><em>E</em><em>S</em><em> </em><em>O</em><em>F</em><em> </em><em>B</em><em> </em><em>A</em><em>N</em><em>D</em><em> </em><em>C</em>
<em>
</em>
therefore the gradient of BC is -2/-6 which simplifies to 1/3.
<h3>
therefore, BC and DE are parallel as they both have a gradient/slope of 1/3 and parallel lines have the same gradient</h3>