Answer:
y = 3sin2t/2 - 3cos2t/4t + C/t
Step-by-step explanation:
The differential equation y' + 1/t y = 3 cos(2t) is a first order differential equation in the form y'+p(t)y = q(t) with integrating factor I = e^∫p(t)dt
Comparing the standard form with the given differential equation.
p(t) = 1/t and q(t) = 3cos(2t)
I = e^∫1/tdt
I = e^ln(t)
I = t
The general solution for first a first order DE is expressed as;
y×I = ∫q(t)Idt + C where I is the integrating factor and C is the constant of integration.
yt = ∫t(3cos2t)dt
yt = 3∫t(cos2t)dt ...... 1
Integrating ∫t(cos2t)dt using integration by part.
Let u = t, dv = cos2tdt
du/dt = 1; du = dt
v = ∫(cos2t)dt
v = sin2t/2
∫t(cos2t)dt = t(sin2t/2) + ∫(sin2t)/2dt
= tsin2t/2 - cos2t/4 ..... 2
Substituting equation 2 into 1
yt = 3(tsin2t/2 - cos2t/4) + C
Divide through by t
y = 3sin2t/2 - 3cos2t/4t + C/t
Hence the general solution to the ODE is y = 3sin2t/2 - 3cos2t/4t + C/t
Answer:
Step-by-step explanation:
What can be used as a statement in a two column proof?
A two-column proof consists of a list of statements, and the reasons why those statements are true. The statements are in the left column and the reasons are in the right column. The statements consists of steps toward solving the problem.
Here is your answer:
In order to find your answer we will have to solve each option separately to see which one equals 6 × 5.
<---- Not the answer
<----- Not the answer
<---- Your answer
Therefore your answer is option C "6 + 6 + 6 + 6 + 6 ."
Hope this helps!