1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
3 years ago
13

What is 0.1265625 rounded to the nearest tenth

Mathematics
2 answers:
ahrayia [7]3 years ago
5 0

Answer:

0.13

Step-by-step explanation:

0.1265625...0.12652...0.12656...0.1266...0.127...0.13

katrin2010 [14]3 years ago
4 0

Answer:

0.1 is 0.1265525 rounded to the nearest tenth

You might be interested in
Square of a standard normal: Warmup 1.0 point possible (graded, results hidden) What is the mean ????[????2] and variance ??????
LenaWriter [7]

Answer:

E[X^2]= \frac{2!}{2^1 1!}= 1

Var(X^2)= 3-(1)^2 =2

Step-by-step explanation:

For this case we can use the moment generating function for the normal model given by:

\phi(t) = E[e^{tX}]

And this function is very useful when the distribution analyzed have exponentials and we can write the generating moment function can be write like this:

\phi(t) = C \int_{R} e^{tx} e^{-\frac{x^2}{2}} dx = C \int_R e^{-\frac{x^2}{2} +tx} dx = e^{\frac{t^2}{2}} C \int_R e^{-\frac{(x-t)^2}{2}}dx

And we have that the moment generating function can be write like this:

\phi(t) = e^{\frac{t^2}{2}

And we can write this as an infinite series like this:

\phi(t)= 1 +(\frac{t^2}{2})+\frac{1}{2} (\frac{t^2}{2})^2 +....+\frac{1}{k!}(\frac{t^2}{2})^k+ ...

And since this series converges absolutely for all the possible values of tX as converges the series e^2, we can use this to write this expression:

E[e^{tX}]= E[1+ tX +\frac{1}{2} (tX)^2 +....+\frac{1}{n!}(tX)^n +....]

E[e^{tX}]= 1+ E[X]t +\frac{1}{2}E[X^2]t^2 +....+\frac{1}{n1}E[X^n] t^n+...

and we can use the property that the convergent power series can be equal only if they are equal term by term and then we have:

\frac{1}{(2k)!} E[X^{2k}] t^{2k}=\frac{1}{k!} (\frac{t^2}{2})^k =\frac{1}{2^k k!} t^{2k}

And then we have this:

E[X^{2k}]=\frac{(2k)!}{2^k k!}, k=0,1,2,...

And then we can find the E[X^2]

E[X^2]= \frac{2!}{2^1 1!}= 1

And we can find the variance like this :

Var(X^2) = E[X^4]-[E(X^2)]^2

And first we find:

E[X^4]= \frac{4!}{2^2 2!}= 3

And then the variance is given by:

Var(X^2)= 3-(1)^2 =2

7 0
3 years ago
What is the relationship between angle 8 and angle 4?
GuDViN [60]
Corresponding angles
5 0
4 years ago
Read 2 more answers
Mr. Millar's garden is in the shape of a trapezoid shown below. What is the area of the garden?
soldi70 [24.7K]

Answer:

12.5 unit square

Step-by-step explanation:

The area of a trapezoid is calculated with the following formula:

(b1 + b2)*h/2 (b1: base, b2: base, h: height)

(4+6)*(2.5)*2 = 12.5

5 0
2 years ago
Multiply 1 and 3/4 × 4/5.One and three-fourths written as an improper fraction is .
wariber [46]

Answer:

Multiplication:

1 x (3/4 x4/5)

= 3/5

6 0
3 years ago
Read 2 more answers
Pamela's age is three times Jiri's age. The sum of their ages is 116. What is Jiri's age?
Sedbober [7]

Answer:

29

Step-by-step explanation:

Let Jiri's age be 'x'. Pamela's age is 3x since Pamela's age is three times Jiri's age.

The sum of their ages is 116:

x + 3x = 116

4x = 116

x = 116 ÷ 4 = 29

x = 29

Jiri's age is 29

6 0
2 years ago
Other questions:
  • Plz Urgently for today !!!!!!!!!!!
    6·1 answer
  • If p varies directly with T and p =105 when T=400.Find p when T =500
    14·1 answer
  • What is the prediction for the outcome when the independent variable is 12?
    5·1 answer
  • What is the value of x?​
    11·2 answers
  • Write -3/16, 7/4, -3/8 in order least to greatest
    15·2 answers
  • I NEEED HELPPPPP PLEASEEEE UM BEGGING SOMEONE PLEASEEEEEEEEEEEE​
    10·2 answers
  • Please help! I’m confused.
    6·2 answers
  • An 8-foot ladder leans against a wall and makes a 53° angle with the wall. Which is closest to the distance up the wall the ladd
    12·1 answer
  • write the slope - intercept equation of the line that passes through the point (6, "-1)" and has a slope of "-1/3"
    5·1 answer
  • a computer randomly selects 800 names from a list of all registered voters. those selected are surveyed to predict who will win
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!