1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Papessa [141]
3 years ago
9

Solve -4y - 3 + 3y = 8 - 2y -15, interpret the result

Mathematics
1 answer:
Elenna [48]3 years ago
8 0

Answer:

y = -4

Step-by-step explanation:

-4y - 3 + 3y = 8 - 2y - 15

~Combine like terms

-y - 3 = -2y - 7

~Add 3 to both sides

-y = -2y - 4

~Add 2y to both sides

y = -4

Best of Luck!

You might be interested in
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
2 years ago
Solve the quadratic equation numerically (using tables of x- and y- values). x squared + 5 x + 6 = 0 a. x = -3 or x = -2 c. x =
sineoko [7]

Answer:

22

Step-by-step explanation:

I did it on math class

6 0
2 years ago
Read 2 more answers
I need help in learning how to solve this equation using substitution:
Tomtit [17]

Answer:

x=3, z=-1, y=6

Step-by-step explanation:

you need to make the coefficients of each variable equal to each other then subtract 2 equations.

this one: multiply -4 in 1st

4x+4y+4z=32

-4x+4y+5z=7

_____________

8x+0-z=25

we have 2 equations with 2 variables now

2x+2z=4

8x-z=25

4 0
2 years ago
A car purchased for $15,000 depreciates under a straight-line method in the amount of $950 each year. Which equation below best
alexandr1967 [171]
I believe it will be B. y = 15,000 - 950 x
So after a year it will be 15,000 - 950 = 14,050
8 0
3 years ago
Read 2 more answers
**WILL GIVE THE BRAINLIEST! &amp; LIKE**
Tamiku [17]
1) combine like terms (k)
0 = 7k
k = 0/7 = 0
zero divided by any numbers will be zero

2) combine the like terms (the constant of -4 + 1)
9 = 6x - 3
add 3 to both sides
12 = 6x
x=2

3) -3+3=0
-4=v

4) 4+3=7
8=k+7
k=1

5)x-5x = -4x
16= -4x
x = -4
8 0
3 years ago
Other questions:
  • How to solve -2(t-4)=10-2t
    15·2 answers
  • The cost of a jacket increased from $65.00 to $72.15. What is the percentage increase of the cost of the jacket?
    9·1 answer
  • Your dog, Cujo, has a water bowl, shown below, that is in the same shape of a right circular cylinder with a diameter of 8 inche
    6·2 answers
  • Which statement holds true for a skewed histogram showing a distribution of the weights of students in a class?
    13·1 answer
  • Multiples of 6 are also multiples of 3
    11·2 answers
  • HELP MEEEEE<br> In complete sentences, describe the characteristics of this scatterplot.
    10·2 answers
  • Solve for x<br><br>find AC<br>this is the last question I'm posting ​
    5·1 answer
  • If the mean of 6 numbers increased by 3, by how much would the sum of
    15·2 answers
  • At noon Joyce drove to the lake at 30 miles per hour. but she made the long walk back home at 4 miles per hour. How long did she
    13·2 answers
  • The area enclosed by the graphs of y = 1/x, y = 1, and x = 3 is rotated about the line y = -1. Find the volume and show steps.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!