Answer:
The angles do not have the same reference angle.
Step-by-step explanation:
1) Angle 5π / 3 radians:
Convert radians to degrees: 5π/3 × 180° / π = 300°
300° is in the fourth quadrant
The reference angle for angles in the fourth quadrant is 360° - angle ⇒ 360° - 300° = 60°.
∴ The reference angle for this angle is 60°.
2) Angle 5π / 6 radians:
Convert radians to degrees: 5π/6 × 180° / π = 150°
150° is in the second quadrant
The reference angle for angles in the second quadrant is 180° - angle ⇒ 180° - 150° = 30°.
∴ The reference angle for this angle is 30°.
3) Conclusion:
Since the reference angles are different, the tangent ratios have different values.
tan (5π/3) = - tan(60°) = - √3
tan (5π/6) = - tan(30°) = - (√3)/3
Note that the tangent is negative in both second and fourth quadrants.
If correct please give brainliest
<em>Stay safe and healthy</em>
Thank You
Answer:
2 hours: 3968 <u>[I don't understand the $ sign in the answer box]</u>
At midnight: 12137
Step-by-step explanation:
The bacteria are increasing by 15% every hour. So for every hour we will have what we started with, plus 15% more.
The "15% more" can be represented mathematically with (1 + 0.15) or 1.15. Let's call this the "growth factor" and assign it the variable b. b is (1 + percent increase).
Since this per hour, in 1 hour we'll have (3000)*(1.15) = 3450
At the end of the second hour we're increased by 15% again:
(3450)*(1.15) = 3968.
Each additional hour add another (1.15) factor, If we assign a to be the starting population, this can be represented by:
P = a(1.15)^t for this sample that increase 15% per hour. t is time, in hours.
If a represents the growth factor, and P is the total population, the general expression is
P = ab^t
Using this for a = 3000 and b = 1.15, we can find the total population at midnight after starting at 2PM. That is a 10 hour period, so t = 10
P = (3000)*(1.15)^10
P = 12137
Answer:
16.7552
Step-by-step explanation:
The Area of a sector of a circle is θ/360 pi r²
so,
30/360 x 3.142 x 8 x 8
= 16.7551 to four decimal places is
What do you need help with