1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
True [87]
3 years ago
8

Prove it please answer only if you know​

Mathematics
1 answer:
deff fn [24]3 years ago
4 0

Part (c)

We'll use this identity

\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)\\\\

to say

\sin(A+45) = \sin(A)\cos(45) + \cos(A)\sin(45)\\\\\sin(A+45) = \sin(A)\frac{\sqrt{2}}{2} + \cos(A)\frac{\sqrt{2}}{2}\\\\\sin(A+45) = \frac{\sqrt{2}}{2}(\sin(A)+\cos(A))\\\\

Similarly,

\sin(A-45) = \sin(A + (-45))\\\\\sin(A-45) = \sin(A)\cos(-45) + \cos(A)\sin(-45)\\\\\sin(A-45) = \sin(A)\cos(45) - \cos(A)\sin(45)\\\\\sin(A-45) = \sin(A)\frac{\sqrt{2}}{2} - \cos(A)\frac{\sqrt{2}}{2}\\\\\sin(A-45) = \frac{\sqrt{2}}{2}(\sin(A)-\cos(A))\\\\

-------------------------

The key takeaways here are that

\sin(A+45) = \frac{\sqrt{2}}{2}(\sin(A)+\cos(A))\\\\\sin(A-45) = \frac{\sqrt{2}}{2}(\sin(A)-\cos(A))\\\\

Therefore,

2\sin(A+45)*\sin(A-45) = 2*\frac{\sqrt{2}}{2}(\sin(A)+\cos(A))*\frac{\sqrt{2}}{2}(\sin(A)-\cos(A))\\\\2\sin(A+45)*\sin(A-45) = 2*\left(\frac{\sqrt{2}}{2}\right)^2\left(\sin^2(A)-\cos^2(A)\right)\\\\2\sin(A+45)*\sin(A-45) = 2*\frac{2}{4}\left(\sin^2(A)-\cos^2(A)\right)\\\\2\sin(A+45)*\sin(A-45) = \sin^2(A)-\cos^2(A)\\\\

The identity is confirmed.

==========================================================

Part (d)

\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)\\\\\sin(45+A) = \sin(45)\cos(A) + \cos(45)\sin(A)\\\\\sin(45+A) = \frac{\sqrt{2}}{2}\cos(A) + \frac{\sqrt{2}}{2}\sin(A)\\\\\sin(45+A) = \frac{\sqrt{2}}{2}(\cos(A)+\sin(A))\\\\

Similarly,

\sin(45-A) = \sin(45 + (-A))\\\\\sin(45-A) = \sin(45)\cos(-A) + \cos(45)\sin(-A)\\\\\sin(45-A) = \sin(45)\cos(A) - \cos(45)\sin(A)\\\\\sin(45-A) = \frac{\sqrt{2}}{2}\cos(A) - \frac{\sqrt{2}}{2}\sin(A)\\\\\sin(45-A) = \frac{\sqrt{2}}{2}(\cos(A)-\sin(A))\\\\

-----------------

We'll square each equation

\sin(45+A) = \frac{\sqrt{2}}{2}(\cos(A)+\sin(A))\\\\\sin^2(45+A) = \left(\frac{\sqrt{2}}{2}(\cos(A)+\sin(A))\right)^2\\\\\sin^2(45+A) = \frac{1}{2}\left(\cos^2(A)+2\sin(A)\cos(A)+\sin^2(A)\right)\\\\\sin^2(45+A) = \frac{1}{2}\cos^2(A)+\frac{1}{2}*2\sin(A)\cos(A)+\frac{1}{2}\sin^2(A)\right)\\\\\sin^2(45+A) = \frac{1}{2}\cos^2(A)+\sin(A)\cos(A)+\frac{1}{2}\sin^2(A)\right)\\\\

and

\sin(45-A) = \frac{\sqrt{2}}{2}(\cos(A)-\sin(A))\\\\\sin^2(45-A) = \left(\frac{\sqrt{2}}{2}(\cos(A)-\sin(A))\right)^2\\\\\sin^2(45-A) = \frac{1}{2}\left(\cos^2(A)-2\sin(A)\cos(A)+\sin^2(A)\right)\\\\\sin^2(45-A) = \frac{1}{2}\cos^2(A)-\frac{1}{2}*2\sin(A)\cos(A)+\frac{1}{2}\sin^2(A)\right)\\\\\sin^2(45-A) = \frac{1}{2}\cos^2(A)-\sin(A)\cos(A)+\frac{1}{2}\sin^2(A)\right)\\\\

--------------------

Let's compare the results we got.

\sin^2(45+A) = \frac{1}{2}\cos^2(A)+\sin(A)\cos(A)+\frac{1}{2}\sin^2(A)\right)\\\\\sin^2(45-A) = \frac{1}{2}\cos^2(A)-\sin(A)\cos(A)+\frac{1}{2}\sin^2(A)\right)\\\\

Now if we add the terms straight down, we end up with \sin^2(45+A)+\sin^2(45-A) on the left side

As for the right side, the sin(A)cos(A) terms cancel out since they add to 0.

Also note how \frac{1}{2}\cos^2(A)+\frac{1}{2}\cos^2(A) = \cos^2(A) and similarly for the sin^2 terms as well.

The right hand side becomes \cos^2(A)+\sin^2(A) but that's always equal to 1 (pythagorean trig identity)

This confirms that \sin^2(45+A)+\sin^2(45-A) = 1 is an identity

You might be interested in
Write an<br> explicit formula for An, the nth term of the sequence 9, 16, 23, ....
gizmo_the_mogwai [7]
someone help meeeee
4 0
2 years ago
Read 2 more answers
(10 POINTS) if you can answer ASAP
Ludmilka [50]

Answer:

A. -0.93

Step-by-step explanation:

It is a negative due to the scatter plot line decreasing as the precipitation increases, which cancels out C & D. Then, it is decreasing rapidly, which portrays it as closer to -1 than 0, meaning the answer is A.

8 0
3 years ago
Read 2 more answers
What is the value of x?<br> 155<br> 105<br> A. 55°<br> B. 160°<br> C. 50°<br> O D. 20°
Hatshy [7]
If you are taking one away from the other the answer is 50 degrees so try that hope this helps
=C.
3 0
3 years ago
Philip wants to know the weight of a book to within half a gram. His weighing scales only weigh to within 10 grammes.
Andrei [34K]

Answer:

f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)

Step-by-step explanation:

8 0
3 years ago
Leon has 16 fewer quarters than dimes. He has 34 quarters.
ELEN [110]

Answer:

A grand total of 50 dimes

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • Before a new video game is released, it is tested by a number of volunteer gamers. During testing, the experimental probability
    11·2 answers
  • Find m What is the m m
    14·2 answers
  • You know the gist branliest if correct asap
    14·2 answers
  • Next
    7·1 answer
  • Please help me with this​
    5·1 answer
  • Any recommendations for anime?​
    10·2 answers
  • 11. Find the sum of the arithmetic series. overset [22] underset{k=1}\huge{Sigma) (-4k - 13) =​
    8·1 answer
  • Can somebody please help me with this
    11·1 answer
  • Based on the records for the past several​ seasons, a sports fan believes the probability the red team wins is 0.70. The fan als
    8·1 answer
  • the line plot shows the weights of ten books.what is the difference in weight between the two books that weigh the most a. 1/4 p
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!