Let <em>a</em> and <em>b</em> be the zeroes of <em>x</em>² + <em>kx</em> + 12 such that |<em>a</em> - <em>b</em>| = 1.
By the factor theorem, we can write the quadratic in terms of its zeroes as
<em>x</em>² + <em>kx</em> + 12 = (<em>x</em> - <em>a</em>) (<em>x</em> - <em>b</em>)
Expand the right side and equate the coefficients:
<em>x</em>² + <em>kx</em> + 12 = <em>x</em>² - (<em>a</em> + <em>b</em>) <em>x</em> + <em>ab</em>
Then
<em>a</em> + <em>b</em> = -<em>k</em>
<em>ab</em> = 12
The condition that |<em>a</em> - <em>b</em>| = 1 has two cases, so without loss of generality assume <em>a</em> > <em>b</em>, so that |<em>a</em> - <em>b</em>| = <em>a</em> - <em>b</em>.
Then if <em>a</em> - <em>b</em> = 1, we get <em>b</em> = <em>a</em> - 1. Substitute this into the equations above and solve for <em>k</em> :
<em>a</em> + (<em>a</em> - 1) = -<em>k</em> → 2<em>a</em> = 1 - <em>k</em> → <em>a</em> = (1 - <em>k</em>)/2
<em>a</em> (<em>a</em> - 1) = 12 → (1 - <em>k</em>)/2 • ((1 - <em>k</em>)/2 - 1) = 12
→ (1 - <em>k</em>)²/4 - (1 - <em>k</em>)/2 = 12
→ (1 - <em>k</em>)² - 2 (1 - <em>k</em>) = 48
→ (1 - 2<em>k</em> + <em>k</em>²) - 2 (1 - <em>k</em>) = 48
→ <em>k</em>² - 1 = 48
→ <em>k</em>² = 49
→ <em>k</em> = ± √(49) = ±7
Answer:
1 Answer which is zero
Step-by-step explanation:
Attached Picture...
Answer:
a) No, it does not matter whether you roll the die or flip the coin first, as these two events are <u>independent</u> of each other, which means they do not affect each other.
b) Yes.
- Let event 1 be flipping a coin and event 2 be rolling a die.
- Let event 1 be rolling a die and event 2 be flipping a coin.
The likelihood that any outcome will occur will not change, as the events are independent.
c) see attached
d) 12 outcomes (H = head, T = tail, numbers represent the value of the die)
H 1 T 1
H 2 T 2
H 3 T 3
H 4 T 4
H 5 T 5
H 6 T 6
e)




Step-by-step explanation:
{52, 72, 86, 105}
this is the answer