The area between the two functions is 0
<h3>How to determine the area?</h3>
The functions are given as:
f₁(x)= 1
f₂(x) = |x - 2|
x ∈ [0, 4]
The area between the functions is
A = ∫[f₂(x) - f₁(x) ] dx
The above integral becomes
A = ∫|x - 2| - 1 dx (0 to 4)
When the above is integrated, we have:
A = [(|x - 2|(x - 2))/2 - x] (0 to 4)
Expand the above integral
A = [(|4 - 2|(4 - 2))/2 - 4] - [(|0 - 2|(0 - 2))/2 - 0]
This gives
A = [2 - 4] - [-2- 0]
Evaluate the expression
A = 0
Hence, the area between the two functions is 0
Read more about areas at:
brainly.com/question/14115342
#SPJ1
Answe12800 miles
Step-by-step explanation:a year is 12 months, and mile round trip means there and back. so 532x24 for the 24 trips that equals 12768. 12768 rounded to the nearest hundreds is 12800
345 in Standard Form is 3.45 x 10^2
This is because when in standard form the decimal should move to the right 2 times.
Answer:6776.78
Step-by-step explanation: