The momentum of a fast object compared to that of a slow object even if they both have the same mass, is their velocities.
Having same mass but different velocities results in different momentum.
Example: mass = 10kg
Velocity 1 = 50 Velocity 2 = 100
Momentum 1 = 10×50 = 500 Ns
Momentum 2 = 10×100 = 1000 Ns
Hope it helped!
Answer:
The pressure on the ground is about 9779.5 Pascal.
The pressure can be reduced by distributing the weight over a larger area using, for example, a thin plate with an area larger than the circular area of the barrel's bottom side. See more details further below.
Explanation:
Start with the formula for pressure
(pressure P) = (Force F) / (Area A)
In order to determine the pressure the barrel exerts on the floor area, we need the calculate the its weight first

where m is the mass of the barrel and g the gravitational acceleration. We can estimate this mass using the volume of a cylinder with radius 30 cm and height 1m, the density of the water, and the assumption that the container mass is negligible:

The density of water is 997 kg/m^3, so the mass of the barrel is:

and so the weight is

and so the pressure is

This answers the first part of the question.
The second part of the question asks for ways to reduce the above pressure without changing the amount of water. Since the pressure is directly proportional to the weight (determined by the water) and indirectly proportional to the area, changing the area offers itself here. Specifically, we could insert a thin plate (of negligible additional weight) to spread the weight of the barrel over a larger area. Alternatively, the barrel could be reshaped (if this is allowed) into one with a larger diameter (and smaller height), which would achieve a reduction of the pressure.
1.) The force of gravity is what we call weight, we define it as:
w=mg
w=5,7kg*9,8m/s²
w=55,86kg (b)
2.) We know that:
power=W/t
power=50J/20s
power=2,5Watts (a)
3.) The work done is equal to the potential energy, so:
Epg=mgh
Epg=63kg*9,8m/s²*7m
Epg=4321J
Now we get the power:
power=W/t
power=4321J/5s
power=864Watts
Now:
1HP=746Watts
=1,16HP (b)
4.) We know that:
F=ma
350N=m*10m/s²
m=350N/10m/s²
m=35kg (b)
5.) d.) Aceleration is tha rate of change in velocity, either positive (increasing) or negative (decreasing)
Answer:
F = 0
Explanation:
Given that,
Force acting to push a bin = 45 N
Mass of the plastic bin, m = 3 kg
The plastic bin is moving with a constant velocity.
We need to find the net force acting on the box. Constant velocity means the change in velocity is equal to 0. It means acceleration will be 0.
As a result, the force acting on the box is equal to 0.
Answer:



Explanation:
= Torque = 36.5 Nm
= Initial angular velocity = 0
= Final angular velocity = 10.3 rad/s
t = Time = 6.1 s
I = Moment of inertia
From the kinematic equations of linear motion we have

Torque is given by

The wheel's moment of inertia is 
t = 60.6 s
= 10.3 rad/s
= 0

Frictional torque is given by

The magnitude of the torque caused by friction is 
Speeding up

Slowing down

Total number of revolutions


The total number of revolutions the wheel goes through is
.