The distance around a figure is called the perimeter.
Hope this helps :)
How do linear, quadratic, and exponential functions compare?
Answer:
How can all the solutions to an equation in two variables be represented?
<u><em>The solution to a system of linear equations in two variables is any ordered pair x,y which satisfies each equation independently. U can Graph, solutions are points at which the lines intersect.</em></u>
<u><em /></u>
<u><em>How can all the solutions to an equation in two variables be represented?</em></u>
<u><em>you can solve it by Iterative method and Newton Raphson's method.</em></u>
<u><em /></u>
<u><em>How are solutions to a system of nonlinear equations found?
</em></u>
Solve the linear equation for one variable.
Substitute the value of the variable into the nonlinear equation.
Solve the nonlinear equation for the variable.
Substitute the solution(s) into either equation to solve for the other variable.
<u><em>
</em></u>
<u><em>How can solutions to a system of nonlinear equations be approximated? U can find the solutions to a system of nonlinear equations by finding the points of intersection. The points of intersection give us an x value and a y value. Using the example system of nonlinear equations, let's look at how u can find approximate solutions.</em></u>
Answer:
Less than two would be one. Since there is only one of that, it would be 1/6th or 0.6666
Step-by-step explanation:
Answer:
Check the explanation
Step-by-step explanation:
Here we have to first of all carry out dependent sample t test. consequently wore goggles first was selected at random for the reason that the reaction time in an emergency taken with goggles would be greater than the amount of reaction time in an emergency taken with not so weakened vision. So that we will get the positive differences d = impaired - normal
b)
To find 95% confidence interval first we need to find sample mean and sample sd for difference d = impaired minus normal.
We can find it using excel that is in the first attached image below,
Therefore sample mean
= 0.98
Sample sd
= 0.3788
To find 95% Confidence interval we can use TI-84 calculator,
Press STAT ----> Scroll to TESTS ---- > Scroll down to 8: T Interval and hit enter.
Kindly check the attached image below.
Therefore we are 95% confident that mean difference in braking time with impaired vision and normal vision is between ( 0.6888 , 1.2712)
Conclusion : As both values in the interval are greater than 0 , mean difference impaired minus normal is not equal to 0
There is significant evidence that there is a difference in braking time with impaired vision and normal vision at 95% confidence level .