Answer:
Find the domain and the range of the following:
x y
3 2
5 7
1 4
9 2
3 7
Explanation:
The oxidation number of chlorine in the reactant can be determined by K ion and O ion. K ion is +1 and O ion is -2. And the Cl is +5. The gas has the greatest entropy and the solid has the least. In the production, there are solid and gas. So it has more entropy than the reactants with solid only.
Explanation:
Balloon that an ocean diver takes to a pressure of 202 k Pa will get reduced in size that is the volume of the balloon will get reduced. This is because pressure and volume of the gas are inversely related to each other.
According to Boyle's law: The pressure of the gas is inversely proportional to the volume occupied by the gas at constant temperature(in Kelvins).
(At constant temperature)
The pressure beneath the sea is 202 kPa and the atmospheric pressure is 101.3 kPa . This increase in pressure will result in decrease in volume occupied by the gas inside the balloon with decrease in size of a balloon. Hence, the size of the balloon will get reduced at 202 kPa (under sea).
Answer: (a) The solubility of CuCl in pure water is
.
(b) The solubility of CuCl in 0.1 M NaCl is
.
Explanation:
(a) Chemical equation for the given reaction in pure water is as follows.

Initial: 0 0
Change: +x +x
Equilibm: x x

And, equilibrium expression is as follows.
![K_{sp} = [Cu^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCu%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)

x = 
Hence, the solubility of CuCl in pure water is
.
(b) When NaCl is 0.1 M,
, 
, 
Net equation: 
= 0.1044
So for, 
Initial: 0.1 0
Change: -x +x
Equilibm: 0.1 - x x
Now, the equilibrium expression is as follows.
K' = 
0.1044 = 
x = 
Therefore, the solubility of CuCl in 0.1 M NaCl is
.
In cell biology, the cytoplasm is the material or protoplasm within a living cell, excluding the cell nucleus. It comprises cytosol (the gel-like substance enclosed within the cell membrane) and the organelles – the cell's internal sub-structures. All of the contents of the cells of prokaryote organisms (such as bacteria, which lack a cell nucleus) are contained within the cytoplasm. Within the cells of eukaryote organisms the contents of the cell nucleus are separated from the cytoplasm, and are then called thenucleoplasm. The cytoplasm is about 80% water and usually colorless.[1]
It is within the cytoplasm that most cellular activities occur, such as many metabolic pathways including glycolysis, and processes such as cell division. The concentrated inner area is called the endoplasm and the outer layer is called the cell cortex or theectoplasm.
Movement of calcium ions in and out of the cytoplasm is a signaling activity for metabolic processes.[2]
In plants, movement of the cytoplasm around vacuoles is known as cytoplasmic streaming.