Continental drift is the movement of Earth’s continents over long periods of time. An evidence for this is that some continents look like puzzle pieces that can fit together, such as South America and Africa. Another evidence is that fossils of the same type have been found in different continents, far apart - suggesting that the two continents once were joined. Another evidence is that identical rocks were found at both sides of the Atlantic Ocean by Alfred Wegener, the main developer of the continents drift theory.
Answer:
d = 8 g/mL
Explanation:
Given data:
Mass of metal = 24 g
Volume of eater = 45 mL
Volume of water + metal = 48 mL
Density of iron metal = ?
Solution:
Volume of metal:
Volume of metal = volume of water+ metal - volume of water
Volume of metal = 48 mL - 45 mL
Volume of metal = 3 mL
Density of metal:
d = m/v
d = 24 g/ 3 mL
d = 8 g/mL
Step 1
The osmotic pressure is calculated as follows:

-------------
Step 2
<em>Information provided:</em>
The mass of solute = 13.6 g
Volume of solution = 251 mL
Absolute temperature = T = 298 K
The molar mass of solute = M = 354.5 g/mol
-------------
Step 3
Procedure:
1 L = 1000 mL => Volume = 251 mL x (1 L/1000 mL) = 0.251 L
---
C = moles of solute/volume of solution (L)
C = mass of solute/(molar mass x Volume (L))
C = 13.6 g/(354.5 g/mol x 0.251 L)
C = 0.153 mol/L
---
π = C x R x T
π = 0.153 mol/L x 0.082 atm L/mol K x 298 K
π = 3.74 atm
Answer: π = 3.74 atm
the answer: They represent different states of the same substance.
The molecular formula of hydrate : CaCl₂.6 H₂O
So there are 6 molecules of H₂O
<h3>Further explanation</h3>
Given
54.7g CaCl₂ and 53.64 g H₂O
Required
The number of molecules H₂O
Solution
mol CaCl₂ :
= mass : MW
= 54.7 : 111 g/mol
= 0.493
mol H₂O :
= 53.64 : 18 g/mol
= 2.98
mol ratio H₂O : CaCl₂ :
= 2.98/0.493 : 0.493/0.493
= 6 : 1