The new pressure, P₂ is 6000 atm.
<h3>Calculation:</h3>
Given,
P₁ = 1.5 atm
V₁ = 40 L = 40,000 mL
V₂ = 10 mL
To calculate,
P₂ =?
Boyle's law is applied here.
According to Boyle's law, at constant temperature, a gas's volume changes inversely with applied pressure.
PV = constant
Therefore,
P₁V₁ = P₂V₂
Put the above values in the equation,
1.5 × 40,000 = P₂ × 10
P₂ = 1.5 × 4000
P₂ = 6000 atm
Therefore, the new pressure, P₂ is 6000 atm.
Learn more about Boyle's law here:
brainly.com/question/23715689
#SPJ4
Answer:
The answer to your question is P = 1.357 atm
Explanation:
Data
Volume = 22.4 L
1 mol
temperature = 100°C
a = 0.211 L² atm
b = 0.0171 L/mol
R = 0.082 atmL/mol°K
Convert temperature to °K
Temperature = 100 + 273
= 373°K
Formula

Substitution

Simplify
(P + 0.0094)(22.3829) = 30.586
Solve for P
P + 0.0094 = 
P + 0.0094 = 1.366
P = 1.336 - 0.0094
P = 1.357 atm
I don’t see nun tho where’s the objects
A cold front is the leading edge of a cooler mass of air, replacing at ground level a warmer mass of air, which lies within a fairly sharp surface trough of low pressure.