Answer:
237.5 K.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.
</em>
where, P is the pressure of the gas in atm (P = 5.2 atm).
V is the volume of the gas in L (V = 15.0 L).
n is the no. of moles of the gas in mol (n = 4.0 mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = ??? K).
∴ T = PV/nR = (5.2 atm)(15.0 L)/(4.0 mol)(0.0821 L.atm/mol.K) = 237.5 K.
Answer: the pressure exerted by the gas is 652 x 10^3 Pa, which corresponds to 652 kPa
Explanation:
The question requires us to calculate the pressure, in kPa, connsidering the following information:
<em>number of moles = n = 4.20mol</em>
<em>volume of gas = V = 15.0L</em>
<em>temperature of gas = T = 280.0 K</em>
We can use the equation of ideal gases to calculate the pressure of the gas, as shown by the rearranged equation below:

Since the volume was given in L and the question requires us to calculate the pressure in kPa, we can use R in units of L.Pa/K.mol:
<em>R = 8314.46 L.Pa/K.mol</em>
Applying the values given by the question to the rearranged equation above, we'll have:

Therefore, the pressure exerted by the gas is 652 x 10^3 Pa, which corresponds to 652 kPa.
<span>Hydrogen carbon and oxygen commonly form covalent bonds.
</span>
HOPE THIS HELPS!
You can search that up online it’s not that hard but good luck !!