As a = 0 , there is no sign . Its only 0. Thus the answer is (c)
Step-by-step explanation:
∫₀³⁰ (r/V C₀ e^(-rt/V)) dt
If u = -rt/V, then du = -r/V dt.
∫ -C₀ e^u du
-C₀ ∫ e^u du
-C₀ e^u + C
-C₀ e^(-rt/V) + C
Evaluate between t=0 and t=30.
-C₀ e^(-30r/V) − -C₀ e^(-0r/V)
-C₀ e^(-30r/V) + C₀
C₀ (-e^(-30r/V) + 1)
I got the same answer. Try changing the lowercase v to an uppercase V.
I don’t like billies music but i like her as a person
7.3in have a nice dayyyyyy
You find the eigenvalues of a matrix A by following these steps:
- Compute the matrix
, where I is the identity matrix (1s on the diagonal, 0s elsewhere) - Compute the determinant of A'
- Set the determinant of A' equal to zero and solve for lambda.
So, in this case, we have
![A = \left[\begin{array}{cc}1&-2\\-2&0\end{array}\right] \implies A'=\left[\begin{array}{cc}1&-2\\-2&0\end{array}\right]-\left[\begin{array}{cc}\lambda&0\\0&\lambda\end{array}\right]=\left[\begin{array}{cc}1-\lambda&-2\\-2&-\lambda\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26-2%5C%5C-2%260%5Cend%7Barray%7D%5Cright%5D%20%5Cimplies%20A%27%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26-2%5C%5C-2%260%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Clambda%260%5C%5C0%26%5Clambda%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1-%5Clambda%26-2%5C%5C-2%26-%5Clambda%5Cend%7Barray%7D%5Cright%5D)
The determinant of this matrix is

Finally, we have

So, the two eigenvalues are
