Answer:
x^3 - 3x^2 +2x
Step-by-step explanation:
Use the distributive property
To factor a quadratic of the form ax^2+bx+c you need to find two values, j and k, which satisfy two conditions...
jk=ac=12 and j+k=b=8, so j and k must be 2 and 6
Then the factors are just (a+j)(a+k), in this case:
(a+2)(a+6)
So the missing term was 6
Step-by-step explanation:
cot x + 2 tan x + tan³ x
Write in terms of sine and cosine:
(cos x / sin x) + 2 (sin x / cos x) + (sin³ x / cos³ x)
Find the common denominator:
(cos⁴ x / (sin x cos³ x) + 2 (sin² x cos² x / (sin x cos³ x)) + (sin⁴ x / (sin x cos³ x))
Add:
(cos⁴ x + 2 sin² x cos² x + sin⁴ x) / (sin x cos³ x)
Factor:
(sin² x + cos² x)² / (sin x cos³ x)
Pythagorean identity:
1 / (sin x cos³ x)
Multiply top and bottom by cos x:
cos x / (sin x cos⁴ x)
Simplify:
cot x sec⁴ x
Answer:
6
- 19x + 15
Step-by-step explanation:
(2x - 3) (3x - 5)
2x(3x-5) - 3 (3x-5)
6
- 10x - 3 (3x - 5)
6
- 10x - 9x + 15
6
- 19x + 15