Answer:
<em>The</em><em> </em><em>Typical</em><em> </em><em>Oxidation</em><em> </em><em>number</em><em> </em><em>of</em><em> </em><em>Oxygen</em><em> </em><em>is</em><em> </em><em>–</em><em>2</em><em>.</em>
<em>And</em><em> </em><em>as</em><em> </em><em>the</em><em> </em><em>question</em><em> </em><em>said</em><em>.</em><em>.</em><em>.</em><em> </em><em>its</em><em> </em><em>Oxidation</em><em> </em><em>changes</em><em> </em><em>to</em><em> </em><em>–</em><em>1</em><em> </em><em>when</em><em> </em><em>it</em><em> </em><em>is</em><em> </em><em>in</em><em> </em><em>Peroxides</em><em> </em><em>and</em><em> </em><em>–</em><em>½</em><em> </em><em>w</em><em>h</em><em>e</em><em>n</em><em> </em><em>i</em><em>t</em><em>s</em><em> </em><em>i</em><em>n</em><em> </em><em>SuperOxides</em><em>.</em>
<em>Correct</em><em> </em><em>Answer</em><em> </em><em>:</em><em> </em><em>Option</em><em> </em><em>D</em><em>.</em>
Answer:
75603.86473 K
Explanation:
Given that:
The 1st excited electronic energy level of He atom = 3.13 × 10⁻¹⁸ J
The objective of this question is to estimate the temperature at which the ratio of the population will be 5.0 between the first excited state to the ground state.
The formula for estimating the ratio of population in 1st excited state to the ground state can be computed as:

From the above equation:
Δ E = energy difference = 3.13 × 10⁻¹⁸ J
k = Boltzmann constant = 1.38 × 10⁻²³ J/K

Thus:





T = 75603.86473 K
Answer:
Only Organism Z is alive, and Organism X has been dead longer than Organism Y.
Explanation:
After the death of an organism, there is radioactive disintegration of C-14 allotrope of carbon, which increases the ratio of C-12 to C-14 in a dead organism as compared to a living organism.
From smallest to largest it will be first Carbon,Water,Carbohydrate,Mitochondria, Skin Cell.
The molar mass of Naphthalene is 128g/mol
Therefore; a mass of 1.64 g of Naphthalene contains'
= 1.64g/128 g
= 0.0128 moles
But, from the Avogadro's law 1 mole of a substance contains 6.022 × 10^23 particles
Therefore 1 mole of Naphthalene contains 6.022×10^23 molecules
Hence; 0.0128 moles × 6.022 ×10^23 molecules
= 7.716 × 10^21 molecules