Answer:
1) El diámetro es de aproximadamente 913,987 cm.
2) La fuerza del cilindro es 5576850 kgf
Explanation:
1) Los parámetros dados son;
El volumen del aire = 13,122 litros = 13122000 cm³
La presión de trabajo = 8.5 kgf / cm²
La longitud del cilindro = 20 cm.
Por lo tanto, tenemos;
El área de la base del cilindro = π · r² = 13122000 cm³ / (20 cm) = 656100 cm²
r = √ (656100 / π) ≈ 456,994 cm
El diámetro = 2 × r ≈ 2 × 456.994 ≈ 913.987 cm
El diámetro ≈ 913,987 cm
2) La fuerza del cilindro = El área de la base del cilindro × La presión de trabajo
∴ La fuerza del cilindro = 656100 cm² × 8.5 kgf / cm² = 5576850 kgf
La fuerza del cilindro = 5576850 kgf
It would be both speed and direction depending on the man's swing
Answer: the constant angular velocity of the arms is 86.1883 rad/sec
Explanation:
First we calculate the linear velocity of the single sprinkler;
Area of the nozzle = π/4 × d²
given that d = 8mm = 8 × 10⁻³
Area of the nozzle = π/4 × (8 × 10⁻³)²
A = 5.024 × 10⁻⁵ m²
Now total discharge is dived into 4 jets so discharge for single jet will be;
Q_single = Q / n = 0.006 / 4 = 1.5 × 10⁻³ m³/sec
So using continuity equation ;
Q_single = A × V_single
V_single = Q_single/A
we substitute
V_single = (1.5 × 10⁻³) / (5.024 × 10⁻⁵)
V_single = 29.8566 m/s
Now resolving the forces as shown in the second image,
Vt = Vcos30°
Vt = 29.8566 × cos30°
Vt = 25.8565 m/s
Finally we calculate the angular velocity;
Vt = rω
ω_single = Vt / r
from the given diagram, radius is 300mm = 0.3m
so we substitute
ω_single = 25.8565 / 0.3
ω_single = 86.1883 rad/sec
Therefore the constant angular velocity of the arms is 86.1883 rad/sec
Answer:

Explanation:
The intensity is related to the power and surface area by
. We need to calculate the surface area of a sphere of radius r=4.3ly.
Since 4.3ly is the distance light travels in 4.3 years at 299792458m/s, we can obtain it in meters by doing:

So we have:
