Answer: How to solve for FX and FY?
to find fx(x, y): keeping y constant, take x derivative; • to find fy(x, y): keeping x constant, take y derivative. f(x1,...,xi−1,xi + h, xi+1,...,xn) − f(x) h . ∂y2 (x, y) ≡ ∂ ∂y ( ∂f ∂y ) ≡ (fy)y ≡ f22. similar notation for functions with > 2 variables.
Explanation:
Answer:
The best option is for the following option m = 15 [g] and V = 5 [cm³]
Explanation:
We have that the density of a body is defined as the ratio of mass to volume.

where:
Ro = density = 3 [g/cm³]
Now we must determine the densities with each of the given values.
<u>For m = 7 [g] and V = 2.3 [cm³]</u>
![Ro=7/2.3\\Ro=3.04 [g/cm^{3} ]](https://tex.z-dn.net/?f=Ro%3D7%2F2.3%5C%5CRo%3D3.04%20%5Bg%2Fcm%5E%7B3%7D%20%5D)
<u>For m = 10 [g] and V = 7 [cm³]</u>
<u />
<u />
<u>For m = 15 [g] and V = 5 [cm³]</u>
<u />
<u />
<u>For m = 21 [g] and V = 8 [cm³]</u>
<u />
<u />
Answer: 0.62
Explanation:
Coefficient of friction is defined as the ratio of the moving force (Fm) acting on a body to the normal reaction (R).
Note that the normal reaction acts vertically on the object and is equal to the objects weight (W) i.e W=R
Since W = mg, W = 38.4 ×10
W= 384N =R
Normal reaction = 384N
The horizontal force acting on the body will be the moving force which is 238N
Coefficient of friction = Fm/R
Coefficient of friction = 238/384
Coefficient of friction = 0.62
Therefore, coefficient of kinetic friction between the box and the floor is 0.62
The correct answer Is B-balanced