I think F= mv²/r
And F=ma
So, ma = mv²/r
a = v²/r
a = 100/5
a = 20 m/s
Answer:
m1/m2 = 0.51
Explanation:
First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:
V = √F/u
This is the equation that describes the relation between speed of a pulse and a force exerted on it.
the value of "u" is:
u = m/L
Where m is the mass of the rod, and L the length.
Now, for the rod 1:
V1 = √F/u1 (1)
rod 2:
V2 = √F/u2 (2)
Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:
1.4V2 = √F/u1 (3)
Replacing (2) in (3):
1.4(√F/u2) = √F/u1 (4)
Now, let's solve the equation 4:
[1.4(√F/u2)]² = F/u1
1.96(F/u2) =F/u1
1.96F = F*u2/u1
1.96 = u2/u1 (5)
Now, replacing the expression of u into (5) we have the following:
1.96 = m2/L / m1/L
1.96 = m2/m1 (6)
But we need m1/m2 so:
1.96m1 = m2
m1/m2 = 1/1.96
m1/m2 = 0.51
The answer is D
<em>"</em><em>a property of matter by which it continues in its existing state of rest or uniform motion in a straight line, unless that state is changed by an external force.</em><em>"</em>
Answer:
W = 14523.6 J
Explanation:
Given,
Mass = 3.9 Kg
Vertical height , h = 380 m
Work done against gravitational force
W = m g h
g is acceleration due to gravity
W = 3.9 x 9.8 x 380
W = 14523.6 J
Hence, the work done by the gravitational force is equal to W = 14523.6 J