Answer:
False
Explanation:
A liquid has a definite shape and takes on the volume of its container. A gas has both the shape and the volume of its container. The particles in a gas cannot be compressed into a smaller volume. Liquids tend to contract when heated.
Hope this helps
<span>We can use the heat
equation,
Q = mcΔT </span>
<span>Where Q is
the amount of energy transferred (J), m is the mass of the
substance (kg), c is the specific heat (J g</span>⁻¹ °C⁻<span>¹) and ΔT is the temperature
difference (°C).</span>
Density = mass / volume
The density of water = 0.997 g/mL
<span>Hence mass of 1.25 L (1250 mL) of water = 0.997 g/mL x 1250 mL</span>
<span> = 1246.25 g</span>
Specific heat capacity of water = 4.186 J<span>/ g °C.</span>
Let's assume that there is no heat loss to the surrounding and the final temperature is T.
By applying the equation,
5430 J = 1246.25 g x 4.186 J/ g °C x (T - 23) °C
(T - 23) °C = 5430 J / 1246.25 g x 4.186 J/ g °C
(T - 23) °C = 1.04 °C
T = 1.04 °C + 23 °C
T = 24.04 °C
Hence, the final temperature of the water is 24.04 °C.
<u>Answer:</u> The reaction order with respect to A is 'm'
<u>Explanation:</u>
Order of the reaction is the sum of the concentration of terms on which the rate of the reaction actually depends. It is equal to the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical equation.
The given chemical equation follows:

The rate of the above reaction is given to us as:
![Rate=k[A]^m[B]^n](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Em%5BB%5D%5En)
In the above rate law expression, the order with respect to the reactants is not equal to the stoichiometric coefficients. Thus, it is not an elementary reaction.
Order with respect to reactant A = m
Order with respect to reactant B = n
Hence, the reaction order with respect to A is 'm'
Answer:
Your pee
Explanation:
When you have to pee you pee
Answer:
~Na+1 is already in the preferred form. Because of this, the second ionization energy of sodium is higher than normal. Mg+1 loses an electron to form s2 p6 .