Answer:
Explanation:
1) Chemical formula of sodium carbonate: <em>Na₂CO₃</em>
2) Ratio of carbon atoms:
- The number of atoms of C in the unit formula Na₂CO₃ is the subscript for the atom, which is 1 (since it is not written).
Hence, the ratio is 1 C atom / 1 Na₂CO₃ unit formula.
This is, there is 1 atom of carbon per each unit formula of sodium carbonate.
3) Calculate the number of moles in 1.773 × 10⁷ carbon atoms
- Divide by Avogadro's number: 6.022 × 10²³ atoms / mol
- number C moles = 1.773 × 10⁷ atoms / (6.022 × 10²³ atoms/mol)
- number C moles = 2.941 × 10⁻¹⁷ mol
Since, the ratio is 1: 1, the number of moles of sodium carbonate is the same number of moles of carbon atoms.
Answer:
Imo : Gas particles are in constant, random motion. The volume of gas particles is negligible in comparison to the volume of the container. There are no attractive forces between gas particles.
Answer:
1.9 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 1.5 atm
- Initial volume (V₁): 3.0 L
- Initial temperature (T₁): 293 K
- Final pressure (P₂): 2.5 atm
- Final temperature (T₂): 303 K
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 1.5 atm × 3.0 L × 303 K / 293 K × 2.5 atm = 1.9 L
<span>2Li⁺(aq) + Zn⁰(s) → 2Li⁰(s) + Zn²⁺(aq)
</span>2Li⁺(aq) + 2e⁻ → 2Li⁰(s)
Zn⁰(s) → Zn²⁺(aq) +2e⁻
2 electrons are transferred from atom of Zn⁰ to 2 ions of Li⁺.