Answer:

Explanation:
Hello!
In this case, according to the ideal gas equation ratio for two states:

Whereas both n and R are cancelled out as they don't change, we obtain:

Thus, by solving for the final pressure, we obtain:

Now, since initial conditions are 1.00 atm, 273.15 K and 17 L and final temperature and volume are 94 + 273 = 367 K and 12 L respectively, the resulting pressure turns out to be:

Best regards!
Oxygen. Is the correct answer
Oxygen has the same number of valence electrons as sulfur. An ion can be an element that gained or lost an electron.
I believe the correct answer from the choices listed above is the second option. The expression (6.0 x 104) (3.1 x 10-1) is equal to 1.9 x 10^4. We only have two significant figures from the starting expression that is why we rounded of the product from 1.86 to 1.9.
Answer:
Here's what I get
Explanation:
1. Balanced equation
HQ⁻ + CH₃-Br ⟶ HQ-CH₃ + Br⁻
(I must use HQ because the Brainly Editor thinks the O makes a forbidden word)
2. Mechanism
HQ⁻ + CH₃-Br ⟶[HQ···CH₃···Br]⁻⟶ HQ-CH₃ + Br⁻
A C B
The hydroxide ion attacks the back side of the carbon atom in the bromomethane (A).
At the same time as the Q-H bond starts to form, the C-Br bond starts to break.
At the half-way point, we have a high-energy intermediate (C) with partially formed C-O and C-Br bonds.
As the reaction proceeds further, the Br atom drops off to form the products — methanol and bromide ion (B).
3. Energy diagram
See the diagram below.