Moles = mass/molar mass, so n(C2H6O)= 16.0 / (12+12+(1x6)+16)
=0.348 (to correct sig figs)
Answer:
Explanation:
1. Calculate the volume of the unit cell
V = l³ = (2.866 × 10⁻⁸ cm)³ = 2.354 × 10⁻²³ cm³
2. Calculate the mass of a unit cell
3. Calculate the mass of one atom
A body-centred unit cell contains two atoms.
Answer:
The statements that correctly describes pyruvate dehydrogenase includes:
- Several copies each of E 1 and E 3 surround E 2.
-A regulatory kinase and phosphatase are part of the mammalian PDH complex.
-E 2 contains three domains.
Explanation:
Pyruvate dehydrogenase is a hydrolase key enzyme in glucose metabolism which converts pyruvate to acetyl- ChoA. It also forms a complex that catalyzes an irreversible reaction that is the entry point of pyruvate into the TCA cycle. Pyruvate dehydrogenase complex contains E1, E2 and E3 enzymes that transform pyruvate, NAD+, coenzyme A into acetyl-CoA, CO2, and NADH. Also, A regulatory kinase and phosphatase are part of the mammalian PDH complex and E 2 contains three domains.
Answer: 82.0 g/mole
Explanation:
Use the units to see that if we divide 1.64 grams by 0.0200 moles, we'll get a number that is grams/mole, the definition of formula mass.
1.64/0.0200 = 82.0 g/mole (3 sig figs)
We can't tell from this alone what the molecular formula might be, but C6H10 (cyclohexene) comes close (82.1 grams/mole).