Blue is the color that can be best absorbed, as orange is the color seen.
<span>26.833 liters
Aluminum oxide has a formula of Al</span>₂O₃,<span> which means for every mole of aluminum used, 1.5 moles of oxygen is required (3/2 = 1.5).
Given 42.5 g of aluminum divided by its atomic mass (26.9815385) gives 1.575 moles of aluminum.
Since it takes 1.5 moles of oxygen per mole of aluminum to make aluminum oxide, you'll need 2.363 moles of oxygen atoms.
Each molecule of oxygen gas has 2 oxygen atoms, so the moles of oxygen gas will be 2.363/2 = 1.1815
Finally, you need to calculate the volume of </span>1.1815 <span>moles of oxygen gas.
1 mole of gas at STP occupies 22.7 liters of volume. Therefore,
1.1815 * 22.7 = </span>26.8 liters <span>of oxygen gas.
</span>
The scheme is shown below, the steps involved are as follow,
Step one: Reduction: The carbonyl group of given compound on reduction using
Wolf Kishner reagent converts the carbonyl group into -CH₂- group.
Step two: Epoxidation: The double bond present in starting compound when treated with
m-CPBA (<span>meta-Chloroperoxybenzoic acid) gives corrsponding epoxide.
Step three: Reduction: The epoxide is reduced to alcohol on treatment with
Lithium Aluminium Hydride (LiAlH</span>₄)<span> followed by hydrolysis.
Step four: Oxidation: The hydroxyl group (alcohol) is
oxidized to carbonyl (ketonic group) using oxidizing agent
Chromic acid (H</span>₂CrO₄).
Answer:
C) Q < K, reaction will make more products
Explanation:
- 1/8 S8(s) + 3 F2(g) ↔ SF6(g)
∴ Kc = 0.425 = [ SF6 ] / [ F2 ]³
∴ Q = [ SF6 ] / [ F2 ]³
∴ [ SF6 ] = 2 mol/L
∴ [ F2 ] = 2 mol/L
⇒ Q = ( 2 ) / ( 2³)
⇒ Q = 0.25
⇒ Q < K, reaction will make more products
All of the the answers are are correct but a fume hood is more for if you are dealing with chemicals that can produce fumes the are deadly to people