The answer is d. particles move from an area of high concentration to low concentration.
CO2 is the emperical formula of carbon dioxide
<span>Density is a value for
mass, such as kg, divided by a value for volume, such as m3. Density is a
physical property of a substance that represents the mass of that substance per
unit volume. We calculate as follows:
PV = nRT
PV = mRT/ Molar mass
m/V = P(molar mass)/RT
Density = P(molar mass)/RT
Density = 2.0 ( 30.97 ) / 0.08206 ( 20 + 273.15) = 2.57 g/L <----First option</span>
The balanced equation for the reaction is as follows;
Ca(OH)₂ + 2HBr --> CaBr₂ + 2H₂O
stoichiometry of Ca(OH)₂ to HBr is 1:2
number of Ca(OH)₂ moles reacted - 0.10 mol/L x 0.1000 L = 0.010 mol
Number of HBr moles added - 0.10 mol/L x 0.4000 = 0.040 mol
1 mol of Ca(OH)₂ needs 2 mol of HBr for neutralisation
therefore 0.010 mol of Ca(OH)₂ needs - 0.010 x 2 = 0.020 mol of HBr to be neutralised
but 0.040 mol of HBr has been added therefore number of moles of HBr in excess - 0.040 - 0.020 = 0.020 mol
then pH of the medium can be calculated using the excess H⁺ ions
HBr is a strong acid therefore complete ionization
[HBr] = [H⁺]
[H⁺] = 0.020 mol / (100.0 + 400.0 mL)
= 0.020 mol / 0.5 L
= 0.040 mol/L
pH = -log[H⁺]
pH = - log [0.040 M]
pH = 1.40
pH of the medium is 1.40