Explanation:
It is given that,
Initial orbit of electrons, 
Final orbit of electrons, 
We need to find energy, wavelength and frequency of the wave.
When atom make transition from one orbit to another, the energy of wave is given by :

Putting all the values we get :

We know that : 
So,

Energy of wave in terms of frequency is given by :


Also, 
is wavelength
So,

Hence, this is the required solution.
Answer:

Explanation:
From the question we were given 0.155 moles of HBr, but Br and H are in ratio 1:1, then there are 0.155 moles of Br- ions.
We were also told that the solution contain NaBr, of 25.9 g. Then it must be converted to moles.
molar mass of NaBr =(22.99g + 79.90 )
= 102.89 g per mol.
the moles of NaBr can be calculated as 25.9 / 102.89
=0.252 moles
But Na and Br are in a ratio 1:1 , then there are 0.252 moles of Br-.
Then to get two Br- mol , we will add the first and second mol of Br- together
= 0.155 + 0.252
=0.407 moles.
The given solution has volume of 250 mL, but we know that there are 1000 ml in a liter, then if we convert to L for unit consistency we have
= 250/1000
= 0.25 L
molarity=0.407 moles/0.25 L
= 1.628 M.
Therefore, Br ion molarity is 1.628 M.
Answer:
C. I
Explanation:
The elements are categorized in groups and periods. The periods are horizontal and the groups are vertical. The elements in the same group (vertical) have very similar characteristics.
K2CO3 can be thought to contain 6 atoms (2 K, 1 C, 3O).
If you are given grams of K2CO3 you can divide by the molar mass to get to moles and then multiply by Avogadro's number.
Explanation:
All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons.