23.50 is rounded to nearest hundredth
Answer:
![\frac{\tan 60\degree}{\cos45 \degree}= \sqrt{6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctan%2060%5Cdegree%7D%7B%5Ccos45%20%5Cdegree%7D%3D%20%5Csqrt%7B6%7D)
Step-by-step explanation:
We want to evaluate
![\frac{\tan 60\degree}{\cos45 \degree}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctan%2060%5Cdegree%7D%7B%5Ccos45%20%5Cdegree%7D)
We use special angles or the unit circle to obtain;
![\frac{\tan 60\degree}{\cos45 \degree}=\frac{\sqrt{3}}{\frac{\sqrt{2}}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctan%2060%5Cdegree%7D%7B%5Ccos45%20%5Cdegree%7D%3D%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%7D)
This implies that;
![\frac{\tan 60\degree}{\cos45 \degree}=\sqrt{3}\div \frac{\sqrt{2}}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctan%2060%5Cdegree%7D%7B%5Ccos45%20%5Cdegree%7D%3D%5Csqrt%7B3%7D%5Cdiv%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D)
![\frac{\tan 60\degree}{\cos45 \degree}=\sqrt{3}\times \sqrt{2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctan%2060%5Cdegree%7D%7B%5Ccos45%20%5Cdegree%7D%3D%5Csqrt%7B3%7D%5Ctimes%20%5Csqrt%7B2%7D)
![\frac{\tan 60\degree}{\cos45 \degree}= \sqrt{6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctan%2060%5Cdegree%7D%7B%5Ccos45%20%5Cdegree%7D%3D%20%5Csqrt%7B6%7D)
Answer:
A. y = -16
Step-by-step explanation:
Hello!
What we do to one side of the equation we have to do to the other.
y + 7 = -9
We have to get y by itself so we have to get rid of the seven by doing the opposite of what it says
The opposite of addition is subtraction so we subtract 7 from both sides
y + 7 - 7 = -9 - 7
Solve
y + 0 = -16
Simplify
y = -16
The answer is A. y = -16
Hope this helps!