Answer:
Option (C) is correct.
Step-by-step explanation:
The given options of the possible equation for the graph are as follows:
![(A) y=2\left(\frac{3}{2}\right)^x \\\\(B) y=-2\left(\frac{3}{2}\right)^{-x} \\\\(C) y=2\left(\frac{2}{3}\right)^x \\\\(D) y=-2\left(\frac{2}{3}\right)^{-x} \\\\](https://tex.z-dn.net/?f=%28A%29%20y%3D2%5Cleft%28%5Cfrac%7B3%7D%7B2%7D%5Cright%29%5Ex%20%5C%5C%5C%5C%28B%29%20y%3D-2%5Cleft%28%5Cfrac%7B3%7D%7B2%7D%5Cright%29%5E%7B-x%7D%20%5C%5C%5C%5C%28C%29%20y%3D2%5Cleft%28%5Cfrac%7B2%7D%7B3%7D%5Cright%29%5Ex%20%5C%5C%5C%5C%28D%29%20y%3D-2%5Cleft%28%5Cfrac%7B2%7D%7B3%7D%5Cright%29%5E%7B-x%7D%20%5C%5C%5C%5C)
The given graph is decreasing and at x=0, y=2.
So, first checking the value of the given options for x=0
![(A) y=2\left(\frac{3}{2}\right)^0=2\times 1= 2 \\\\(B) y=--2\left(\frac{3}{2}\right)^{-0}= -2\times 1= -2 \; (not\; possible) \\\\(C) y=2\left(\frac{2}{3}\right)^0= 2\times 1= 2 \\\\(D) y=2\left(\frac{2}{3}\right)^{-0} = -2\times 1= -2 \; (not\; possible)](https://tex.z-dn.net/?f=%28A%29%20y%3D2%5Cleft%28%5Cfrac%7B3%7D%7B2%7D%5Cright%29%5E0%3D2%5Ctimes%201%3D%202%20%5C%5C%5C%5C%28B%29%20y%3D--2%5Cleft%28%5Cfrac%7B3%7D%7B2%7D%5Cright%29%5E%7B-0%7D%3D%20-2%5Ctimes%201%3D%20-2%20%5C%3B%20%28not%5C%3B%20possible%29%20%5C%5C%5C%5C%28C%29%20y%3D2%5Cleft%28%5Cfrac%7B2%7D%7B3%7D%5Cright%29%5E0%3D%202%5Ctimes%201%3D%202%20%5C%5C%5C%5C%28D%29%20y%3D2%5Cleft%28%5Cfrac%7B2%7D%7B3%7D%5Cright%29%5E%7B-0%7D%20%3D%20-2%5Ctimes%201%3D%20-2%20%5C%3B%20%28not%5C%3B%20possible%29)
As, for x=0, y=2, so options (C) and (D) are not possible, so rejected.
Now, checking the nature (increasing or decreasing) of the given equation by differentiating it.
For option (A),
![\frac{dy}{dx}=2\left(\frac{3}{2}\right)^{x}\times \ln\left(\frac{3}{2}\right)](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D2%5Cleft%28%5Cfrac%7B3%7D%7B2%7D%5Cright%29%5E%7Bx%7D%5Ctimes%20%5Cln%5Cleft%28%5Cfrac%7B3%7D%7B2%7D%5Cright%29)
As ![\ln \left(\frac{3}{2}\right)=\ln(1.5)>0 \;and\; \left(\frac{3}{2}\right)^{x} >0](https://tex.z-dn.net/?f=%5Cln%20%5Cleft%28%5Cfrac%7B3%7D%7B2%7D%5Cright%29%3D%5Cln%281.5%29%3E0%20%5C%3Band%5C%3B%20%5Cleft%28%5Cfrac%7B3%7D%7B2%7D%5Cright%29%5E%7Bx%7D%20%3E0)
So, ![\frac{dy}{dx}>0](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3E0)
Therefore, the function in option (A) is increasing function.
Similarly, for option (C),
![\frac{dy}{dx}=2\left(\frac{2}{3}\right)^{x}\times \ln\left(\frac{2}{3}\right)](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D2%5Cleft%28%5Cfrac%7B2%7D%7B3%7D%5Cright%29%5E%7Bx%7D%5Ctimes%20%5Cln%5Cleft%28%5Cfrac%7B2%7D%7B3%7D%5Cright%29)
As ![\ln \left(\frac{2}{3}\right)=\ln(0.67)0](https://tex.z-dn.net/?f=%5Cln%20%5Cleft%28%5Cfrac%7B2%7D%7B3%7D%5Cright%29%3D%5Cln%280.67%29%3C0%20%5C%3Band%5C%3B%20%5Cleft%28%5Cfrac%7B3%7D%7B2%7D%5Cright%29%5E%7Bx%7D%20%3E0)
So, ![\frac{dy}{dx}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3C0)
Therefore, the function in option (C) is decreasing function.
As the given graph is decreasing, so, (C) represents
the given graph.
Hence, option (C) is correct.