50 is not a perfect square because it does not have a perfect square root where as 49 is 7, 121 is 11, and 1 is 1
Answer:14708
Step-by-step explanation:Exponential Functions:
y=abxy=ab^x this is not right not correct
y=ab
x
a=starting value = 13000a=\text{starting value = }13000
a=starting value = 13000
r=rate = 2.5%=0.025r=\text{rate = }2.5\% = 0.025
r=rate = 2.5%=0.025
Exponential Growth:\text{Exponential Growth:}
Exponential Growth:
b=1+r=1+0.025=1.025b=1+r=1+0.025=1.025
b=1+r=1+0.025=1.025
Write Exponential Function:
y=13000(1.025)xy=13000(1.025)^x
y=13000(1.025)
x
Put it all together
Plug in time for x:\text{Plug in time for x:}
Plug in time for x:
y=13000(1.025)5y=13000(1.025)^{5}
y=13000(1.025)
5
y=14708.30677y= 14708.30677
y=14708.30677
Evaluate
y≈14708y\approx 14708
y≈14708
I thinks its 4.375 all u do is divide 35 by 8
Answer:
Tom’s age is 7 years
Mary’s age is 13 years
Step-by-step explanation:
Since we do not know the ages, let’s represent the ages by variables at first.
Let m represent mary’s age will t represent Tom’s age.
Now, let’s proceed to have equations.
Adding square of Tom’s age (t^2) to mary’s age give 62
t^2 + m = 62 •••••••(i)
Adding square of mary’s age (m^2) to Tom’s age give 176
m^2 + t = 176 •••••••(ii)
Now, to get the individual ages, we will need to solve both equations simultaneously.
Solving both equations simultaneously without mathematical softwares can be a little hard.
By the use of mathematical software ( wolfram alpha to be specific), we can input both equations and allow the software to solve.
By inputing these equations, we have the values of t to be 7 and m to be 13
And if we try to check by inspection, we can see that these values are actually correct.
7^2 + 13 = 62
13^2 + 7 = 176
Answer:
Step-by-step explanation:
840 red stripes
720 white stripes