1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
torisob [31]
3 years ago
13

The ratio of Kaylins money to nathanmoney is 4:9. if nathan has 45$, how much do they have all together ?

Mathematics
1 answer:
andrey2020 [161]3 years ago
6 0
61$ is the answer hope it helps!
You might be interested in
Please answer below :-)
Serjik [45]

Answer:

B. 88.8

Step-by-step explanation:

let x represent class y

(x+71.2)/2=80   multiply each side by 2

x+71.2=160      subtract 71.2 by both sides

x=88.8

or

trial an error

replace x with each of the numbers and see if it plugs in.

example:

(80.5+71.2)/2=80

151.7/2=80

75.85=80?

false. incorrect

another example:

(88.8+71.2)/2=80

160/2=80

80=80?

true. correct

7 0
3 years ago
The formula K=59(F−32)+273.15 converts temperatures from Fahrenheit F to Kelvin K.
Semmy [17]

Answer:

9/5 (K-273.15) + 32=F

Step-by-step explanation:

K=5 /9(F−32)+273.15

Subtract 273.15 from each side

K-273.15=5/9(F−32)+273.15-273.15

K-273.15=5/9(F−32)

Multiply by 9/5 on each side

9/5 (K-273.15)= 9/5 *5/9(F−32)

9/5 (K-273.15)=(F−32)

Add 32 to each side

9/5 (K-273.15) + 32=F−32 +32

9/5 (K-273.15) + 32=F

4 0
3 years ago
Read 2 more answers
Polynomials with the same roots can have different graphs. True? Or false?
Diano4ka-milaya [45]
True.

E.g. (x-1)(x-2) versus 100(x-1)(x-2)

They have same roots of x= 1 or 2, but the second equation is 100 times stretching of the first one vertically
8 0
3 years ago
Plz help me toofree your my only hope
grandymaker [24]
Area of a circle = πr²

Area of a circle = 3.14 x 11² = 379.94 in²

Area painted in blue = 379.94 ÷ 2 = 189.97 in²

Area painted in purple = 189.97  in²

--------------------------
Answer: 189.97 in²
--------------------------
4 0
3 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Other questions:
  • Log_2(log_5 x) =3 show steps
    15·1 answer
  • Graph f(x) = \xi.<br> Click on the graph until the graph of f(x) = \xi appears.
    14·1 answer
  • A cylinder has volume 78 cm³. What is the volume of a cone with the same radius and height?​
    10·1 answer
  • Use the graph shown to complete the following sentence. when x = -3, then y = ___.<br>​
    7·1 answer
  • Solve the system of equations by substitution. Show all work neatly on your work page. Checking your answer is wise. :) Plz need
    8·1 answer
  • A child wants to fill up a box with snow he can only carry the box if it weighs under 30 pounds the dimensions of the box are 30
    15·2 answers
  • Here yall happy thanksgiving!
    6·1 answer
  • What do you already know about linear relationships?
    11·1 answer
  • Write an equivalent expression.
    9·1 answer
  • Find the slopes form two points (4,-6) and (-4,2)
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!