1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Airida [17]
3 years ago
10

What has been the hardest part about completing your schoolwork? Of all subjects.

Mathematics
1 answer:
anygoal [31]3 years ago
5 0

Answer:

i get distracted

Step-by-step explanation:

You might be interested in
How to solve this trig
n200080 [17]

Hi there!

To find the Trigonometric Equation, we have to isolate sin, cos, tan, etc. We are also given the interval [0,2π).

<u>F</u><u>i</u><u>r</u><u>s</u><u>t</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

What we have to do is to isolate cos first.

\displaystyle  \large{ cos \theta =  -  \frac{1}{2} }

Then find the reference angle. As we know cos(π/3) equals 1/2. Therefore π/3 is our reference angle.

Since we know that cos is negative in Q2 and Q3. We will be using π + (ref. angle) for Q3. and π - (ref. angle) for Q2.

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>2</u>

\displaystyle \large{ \pi -  \frac{ \pi}{3}  =  \frac{3 \pi}{3}  -  \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{2 \pi}{3} }

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi  +   \frac{ \pi}{3}  =  \frac{3 \pi}{3}   +   \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{4 \pi}{3} }</u>

Both values are apart of the interval. Hence,

\displaystyle \large \boxed{ \theta =  \frac{2 \pi}{3} , \frac{4 \pi}{3} }

<u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

Isolate sin(4 theta).

\displaystyle \large{sin 4 \theta =  -  \frac{1}{ \sqrt{2} } }

Rationalize the denominator.

\displaystyle \large{sin4 \theta =  -  \frac{ \sqrt{2} }{2} }

The problem here is 4 beside theta. What we are going to do is to expand the interval.

\displaystyle \large{0 \leqslant  \theta < 2 \pi}

Multiply whole by 4.

\displaystyle \large{0 \times 4 \leqslant  \theta \times 4 < 2 \pi \times 4} \\  \displaystyle \large \boxed{0 \leqslant 4 \theta < 8 \pi}

Then find the reference angle.

We know that sin(π/4) = √2/2. Hence π/4 is our reference angle.

sin is negative in Q3 and Q4. We use π + (ref. angle) for Q3 and 2π - (ref. angle for Q4.)

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi +  \frac{ \pi}{4}  =  \frac{ 4 \pi}{4}  +  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{  \frac{5 \pi}{4} }</u>

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{2 \pi -  \frac{ \pi}{4}  =  \frac{8 \pi}{4}  -  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{ \frac{7 \pi}{4} }

Both values are in [0,2π). However, we exceed our interval to < 8π.

We will be using these following:-

\displaystyle \large{ \theta + 2 \pi k =  \theta \:  \:  \:  \:  \:  \sf{(k  \:  \: is \:  \: integer)}}

Hence:-

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>3</u>

\displaystyle \large{ \frac{5 \pi}{4}  + 2 \pi =  \frac{13 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 4\pi =  \frac{21 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 6\pi =  \frac{29 \pi}{4} }

We cannot use any further k-values (or k cannot be 4 or higher) because it'd be +8π and not in the interval.

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{ \frac{ 7 \pi}{4}  + 2 \pi =  \frac{15 \pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 4 \pi =  \frac{23\pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 6 \pi =  \frac{31 \pi}{4} }

Therefore:-

\displaystyle \large{4 \theta =  \frac{5 \pi}{4} , \frac{7 \pi}{4} , \frac{13\pi}{4} , \frac{21\pi}{4} , \frac{29\pi}{4}, \frac{15 \pi}{4} , \frac{23\pi}{4} , \frac{31\pi}{4}  }

Then we divide all these values by 4.

\displaystyle \large \boxed{\theta =  \frac{5 \pi}{16} , \frac{7 \pi}{16} , \frac{13\pi}{16} , \frac{21\pi}{16} , \frac{29\pi}{16}, \frac{15 \pi}{16} , \frac{23\pi}{16} , \frac{31\pi}{16}  }

Let me know if you have any questions!

3 0
3 years ago
In a restaurant, Chad tracked the number of children and adults that came in over an hour. During that time, 16 children and 40
Pepsi [2]
You have 40/16
simplified by 8 and you have 5:2
so the answer is d. 5:2
4 0
4 years ago
1/3 of a number decreased by 13 equals 45
mezya [45]

Answer:

174

Step-by-step explanation:

45+13=58

58*3

6 0
3 years ago
May I Please get help?
fiasKO [112]
5 inches by 7 inches.

To find the area of a parallelogram, you can just do base * height. In this case, all other options, once multiplied, equal 36 square inches, it's only 5 * 7 that equals 35 square inches.
3 0
3 years ago
Please explain how to get answer in sq units of parallelogram ABCD
Lostsunrise [7]
Hey there :)

Assuming you are asking how to find the area of parallelogram ABCD:

We know the area formula of a parallelogram:
Area = base x height

Then apply the formula to the given.

7 0
4 years ago
Other questions:
  • Factors of -35 that have a sum of -2
    15·2 answers
  • An airplane is traveling at 1,500 miles/minute and then 5 minutes later reaches a speed of 1800 miles/second. What is the averag
    15·1 answer
  • How to factor 3x^2-10x-8?
    5·2 answers
  • 2/3 is what percent of 1/4
    8·1 answer
  • Name all of the properties of a parallelogram and its diagonal
    5·1 answer
  • Which expression is equivalent to the given expression?
    5·2 answers
  • What is the slope of the line that passes through the points (-6,8) and (-16,33)? write your answer in the simplest form
    7·1 answer
  • A Purse cost $75.00 at Macy’s with a 25% discount. What is the sale price with 7% tax?
    9·1 answer
  • Plot a point on the coordinate plane to represent each of the
    12·1 answer
  • Write the product using exponents.<br><br> 2⋅2⋅2⋅n⋅n<br> Using exponents, the product is ?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!