If both Pamela and Debbie can shelf the same number of books at the end, the smallest number of books each could have shelved is 182
The number of books that Pamela can shelf at a time = 26
The number of books that Debbie can shelf at a time = 7
If both Pamela and Debbie can shelf the same number of books at the end, the smallest number of books each could have shelved is the least common multiple of 26 and 7
The Least common multiple of 26 and 7 = 182
Therefore, if both Pamela and Debbie can shelf the same number of books at the end, the smallest number of books each could have shelved is 182
Learn more on Least Common Multiple here: brainly.com/question/363238
No. If she selects a breakfast at random there is an equal chance she will select each item. 25% chance she will select oatmeal, 25% chance she will select cereal, 25% she will select french toast, and a 25% chance she will select scrambled eggs.
Answer:
If we are to make x small rugs, each of which takes 2 hours to dye, then the total time taken to dye the small rugs is 2x. Similarly for the y large rugs which each take 3 hours to dye, the total time for dyeing the large rugs is 3y. Therefore the total for all sizes of rugs is 2x + 3y. Finally, we have a maximum of 60 available hours for the dyeing, so the total time cannot exceed 60, and the final inequality is
2x + 3y < 60
Step-by-step explanation:
If f(x) = √x and g(x) = 7x + b, then
f(g(x)) = f(7x + b) = √(7x + b)
If the plot of f(g(x)) passes through (4, 6), then
f(g(4)) = √(7•4 + b) = √(28 + b) = 6
Solve for b :
√(28 + b) = 6
(√(28 + b))² = 6²
28 + b = 36
b = 36 - 28
b = 8