1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LiRa [457]
3 years ago
10

Plz i need help in 2 mins 5(12 + 2x) = 125

Mathematics
2 answers:
Anni [7]3 years ago
5 0
Your answer is 6.5 (sorry I lost the question )
labwork [276]3 years ago
4 0

Answer:

x=6.5

Step-by-step explanation:

distribute

60+10x=125

-60 from both sides

10x= 65

÷10 on both sides

x= 6.5

You might be interested in
Please Help ASAP!!!!!!!!
ioda

Answer:

2 i think

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Jose Canseco hit three fifth-deck home runs at SkyDome/Rogers Centre during his career, including the first ever at the stadium
Mademuasel [1]

Answer:

187 ft/s

Step-by-step explanation:

Given in the y direction:

v₀ = 0 ft/s

Δy = 75 ft

a = 32 ft/s²

Find: t

Δy = v₀ t + ½ at²

(75 ft) = (0 ft/s) t + ½ (32 ft/s²) t²

t = 2.165 s

Given in the x direction:

Δx = 480 ft

a = 0 ft/s²

t = 2.165 s

Find: v₀

Δx = v₀ t + ½ at²

(480 ft) = v₀ (2.165 s) + ½ (32 ft/s²) (2.165 s)²

v₀ = 187 ft/s

4 0
3 years ago
If a company employed 50 people in 1995, and tripled their employment by 2005, how many total people would be employed if there
Rus_ich [418]

Answer:

210 people

Step-by-step explanation:

so we know that the number of employees in 2005 is (50)3= 150

so taking 14/10* 150= we get 14*15= 210 people

4 0
3 years ago
Helppp nowww plssss!!!
earnstyle [38]

Answer:

A, B, C, D, and E

Step-by-step explanation:

3 0
3 years ago
Prove :
Sauron [17]

Answer:

See Below.

Step-by-step explanation:

We want to verify the equation:

\displaystyle \frac{1}{\sec\alpha+1}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

We can convert sec(α) to 1 / cos(α):

\displaystyle \frac{1}{1/\cos\alpha+1}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

Multiply both layers of the first fraction by cos(α):

\displaystyle \frac{\cos\alpha}{1+\cos\alpha}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

Create a common denominator. We can multiply the first fraction by (1 - cos(α)):

\displaystyle \frac{\cos\alpha(1-\cos\alpha)}{(1+\cos\alpha)(1-\cos\alpha)}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

Simplify:

\displaystyle \frac{\cos\alpha(1-\cos\alpha)}{1-\cos^2\alpha}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

From the Pythagorean Identity, we know that cos²(α) + sin²(α) = 1 or equivalently, 1 - cos²(α) = sin²(α). Substitute:

\displaystyle \frac{\cos\alpha(1-\cos\alpha)}{\sin^2\alpha}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

Subtract:

\displaystyle \frac{\cos\alpha(1-\cos\alpha)-\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Distribute:

\displaystyle \frac{\cos\alpha-\cos^2\alpha-\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Rewrite:

\displaystyle \frac{(\cos\alpha)-(\cos^2\alpha+\cos\alpha)}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Split:

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos^2\alpha+\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Factor the second fraction, and substitute sin²(α) for 1 - cos²(α):

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos\alpha(\cos\alpha+1)}{1-\cos^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Factor:

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos\alpha(\cos\alpha+1)}{(1-\cos\alpha)(1+\cos\alpha)}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Cancel:

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos\alpha}{(1-\cos\alpha)}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Divide the second fraction by cos(α):

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}=\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Hence proven.

7 0
3 years ago
Other questions:
  • Which are the solutions to the quadratic equation 4x^2=64?
    15·1 answer
  • What is the slope given: (5,2)&(9,-6)
    9·1 answer
  • (Math) How do you describe a function? Must be in 3 complete sentences!
    10·1 answer
  • How do you show work for 8 divided by 412
    13·2 answers
  • Use two points to enter an equation for the function. Give your answer in the form a (b^x). In the event
    7·1 answer
  • What is the solution to the trigonometric inequality sin(x) > cos(x) over the interval 0 ≤ x ≤ 2pi radians?
    10·2 answers
  • A. Y=x+4. B. Y= -2/3x-4. c. Y=-2x+4. d. Y=-1/2x+4 Pls help
    12·1 answer
  • Does this set of ordered pairs represent a function? (-1,5)(0,-3)(2,7)(4,0)(7,5)
    8·2 answers
  • Measure E is equal to?
    12·2 answers
  • Select the best answer.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!