1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ikadub [295]
3 years ago
13

Select the correct answer.

Mathematics
1 answer:
gulaghasi [49]3 years ago
8 0

Answer:

It is B

Step-by-step explanation:

It is the graph of f (x) reflected about the x-axis and shrunk vertically by a factor of 10.

You might be interested in
Someone please help, i don't understand
Mars2501 [29]
Y=-2x+0 haahahaha hope i helped i think
4 0
3 years ago
Read 2 more answers
The table shows the cost of several bunches of bananas.
Alja [10]

Answer:

c=0.42 pounds

Step-by-step explanation:

You divide one of cost by the pounds to get how much one costs then you plug in the equation Cost= # of pound times 48

6 0
3 years ago
Read 2 more answers
Ayuda por favor
sergeinik [125]

A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.

<h3>¿Cómo determinar la medida de un lado de un triángulo desconocido?</h3>

En este problema tenemos un sistema formado por dos triángulos <em>similares</em>, la semejanza entre los dos triángulos se debe a la colinealidad entre los segmentos de línea AP' (triángulo <em>pequeño</em>) y AP'' (triángulo <em>grande</em>), así como de los lados AM y AB, así como los lados AN y AC, así como los <em>mismos</em> ángulos en la <em>misma</em> distribución. (Semejanza Lado - Ángulo - Lado)

En consecuencia, obtenemos las siguientes proporciones:

AP'/AP'' = MN/BC = 1/2     (1)

Finalmente, la proporción entre el triángulo AMN y el cuadrilátero BMNC es:

\frac{AMN}{ABC - AMN} = \frac{\frac{1}{2}\cdot a \cdot \left(\frac{1}{2}\cdot h \right)}{\frac{1}{2}\cdot (2\cdot a) \cdot  h - \frac{1}{2}\cdot a \cdot \left(\frac{1}{2}\cdot h \right)} = \frac{\frac{1}{4}\cdot a\cdot h }{a\cdot h - \frac{1}{4}\cdot a \cdot h }

\frac{AMN}{ABC - AMN} = \frac{\frac{1}{4} }{\frac{3}{4} } = \frac{1}{3}

A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.

Para aprender sobre triángulos semejantes: brainly.com/question/21730013

#SPJ1

3 0
2 years ago
Find the lengths and slopes of the diagonals to name the parallelogram. Choose the most specific name. E (-2, -4), F(0, -1), G(-
Kay [80]

Answer:

1) d) Square

2) Proofs that PWRS is a rhombus are

Length of QS ≠ PR and

Slope of segment QR and PS is -1/2 and Slope of segment RS and QP is -2.

Step-by-step explanation:

The given points (x, y) of the parallelogram are;

E(-2, -4), F(0, -1), G(-3, 1), H(-5, -2)

The slope, m, of the segments are found as follows;

Slope, \, m =\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}

By computation, the slope of segment EF = 1.5

The slope of segment FG = -0.67

The slope of segment GH = 1.5

The slope of segment HE = -0.67

Therefore, EF is parallel to GH and FG is parallel to HE

The length of the sides are;

\sqrt{\left (y_{2}-y_{1}  \right )^{2}+\left (x_{2}-x_{1}  \right )^{2}}

By computation, the length of segment EF = 3.61

The length of segment FG = 3.61

The length of segment GH = 3.61

The length of segment HE = 3.61

The diagonals are;

EG and FH

The length of segment EG = 5.099

The length of segment FH = 5.099

Therefore, the diagonals are equal and the parallelogram is a square

2) The given dimensions are;

P(-1, 3), Q(-2, 5), R(0, 4), S(1, 2)

A rhombus has all sides equal

The length of segment PQ = 2.24

The length of segment QR = 2.24

The length of segment RS = 2.24

The length of segment PS = 2.24

The diagonals are;

QS and PR

The length of segment QS = 4.24

The length of segment PR = 1.41

The slope of segment QR = -0.5

The slope of segment PS = -0.5

The slope of segment RS = -2

The slope of segment QP = -2

Therefore, QS≠QR the parallelogram is a rhombus

The correct option ;

Length of QS ≠ PR and

Slope of segment QR and PS is -1/2 and Slope of segment RS and QP is -2.

Where there are acute angles in parallelogram PQRS, then the correct option is d) Length of QR and PS is 2.2 and Length of RS and QP is 2.2

8 0
3 years ago
X°and x+2 are complementary angles then find the angles<br>​
Elanso [62]

Answer:

44° and 46°

Step-by-step explanation:

Complementary angles sum to 90° , thus

x + x + 2 = 90

2x + 2 = 90 ( subtract 2 from both sides )

2x = 88 ( divide both sides by 2 )

x = 44

Thus the 2 angles are 44° and 44 + 2 = 46°

4 0
3 years ago
Other questions:
  • Solve the following expressions (plz explain)
    12·2 answers
  • Please answer all questions
    12·1 answer
  • What is 6x to the third power?
    9·2 answers
  • Help me pls and explain​
    13·1 answer
  • Find the Surface area of the attached image and round answer to the nearest tenth, if necessary.
    9·1 answer
  • Find the value of the variables in each figure. Explain your reasoning.
    15·1 answer
  • What is common factor ?
    9·1 answer
  • Find the equivalent expressions for (2+7)(x+1).
    6·1 answer
  • Somebody help please
    5·2 answers
  • A number increased by 9 is 13
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!