Answer:
The magnitude of the force that the 6.3 kg block exerts on the 4.3 kg block is approximately 41.9 N
Explanation:
Forces on block 4.3 kg are:
63N to the right and R21 (contact force from the 6.3 kg block) to the left
Net force on 4.3 kg block is: 63 N - R21
Forces on the 6.3 kg block are:
R12 to the right (contact force from the 4.3 kg block) and 11 N to the left.
So net force on the 6.3 kg block is: R12 - 11 N
According to the action-reaction principle the contact forces R21 and R12 must be equal in magnitude (let's call them simply "R").
Then, since the blocks are moving with the SAME acceleration, we equal their accelerations:
a1 = (63 N - R)/4.3 = (R - 11 N)/6.3 = a2
solve for R by cross multiplication
6.3 (63 - R) = 4.3 (R - 11)
396.9 - 6.3 R = 4.3 R - 47.3
369.9 + 47.3 = 10.6 R
444.2 = 10.6 R
R = 444.2 / 10.6
R = 41.90 N
Answer:
4.0 m/s
Explanation:
In the first part of the run, the athlete runs a distance of

at a speed of

So, the time he/she takes is

In the second part of the run, the athlete covers an additional distance of

with a speed

So, the time taken in this second part is

So, the total distance covered is
d = 300 m + 300 m = 600 m
And the total time taken
t = 100 s + 50 s = 150 s
Therefore, the average speed for the entire trip is

This question involves the concepts of projectile motion and launch speed.
(a) The initial launch speed of the projectile is "100 m/s".
(b) The launch angle of the projectile is "53.13°".
<h3>(a) LAUNCH SPEED</h3>
A projectile motion is a motion that takes place on both x and y axes, simultaneously. In this motion the initial launch speed is given by the following formula:

where,
= initial launch speed = ?
= horizontal component of initial launch speed = 60 m/s
= vertical component of initial launch speed = 80 m/s
Therefore,

<h3>(b) LAUNCH ANGLE</h3>
Launch angle is given by th following formula:

Learn more about the projectile motion here:
brainly.com/question/11049671
Answer:
Peak current= 84.86 A
Area of each turn = 0.029 m^2
Explanation:
The peak value of current can be obtained from Irms= 0.707Io. Where Io is the peak current.
Hence;
Irms= 60.0A
Io= Irms/0.707
Io = 60.0/0.707
Io= 84.86 A
Vrms= 0.707Vo
Vo= Vrms/0.707= 170/0.707 = 240.45 V
From;
V0 = NABω
Where;
Vo= peak voltage
N= number of turns
B= magnetic field
A= area of each coil
ω= angular velocity
But ω= 2πf = 2×π×95= 596.9 rads-1
Substituting values;
A= Vo/NBω
A= 240.45/550×0.025×596.9
A= 0.029 m^2