1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mnenie [13.5K]
3 years ago
8

Assume that a clay model of a lion has a mass of 0.225 kg and travels on the ice at a speed of 0.85 m/s. It hits another clay mo

del, which is initially motionless and has a mass of 0.37 kg. Both being soft clay, they naturally stick together.
What is their final velocity?
Physics
1 answer:
Charra [1.4K]3 years ago
5 0

Answer:

Final velocity will be equal to 0.321 m/sec

Explanation:

We have given mass of clay model of lion m_1=0.225kg

Its speed is 0.85 m/sec, so v_1=0.85m/sec

Mass of another clay model m_2=0.37kg

It is given that second clay is motionless

So its velocity v_2=0m/sec

Now according to conservation of momentum

Momentum before collision will be equal to momentum after collision

So m_1v_!+m_2v_2=(m_1+m_2)v, here v is velocity after collision

So 0.225\times 0.85+0.37\times 0+(0.225+0.37)v

0.595v=0.191

v = 0.321 m/sec

So final velocity will be equal to 0.321 m/sec  

You might be interested in
What is solar wind i ask that you help me
Novay_Z [31]
My answer -

the corona, the sun's outer layer, reaches temperatures of up to 2 million degrees Fahrenheit (1.1 million Celsius). At this level, the sun's gravity can't hold on to the rapidly moving particles, and it streams away from the star.

The sun's activity shifts over the course of its 11-year cycle, with sun spot numbers, radiation levels, and ejected material changing over time. These alterations affect the properties of the solar wind, including its magnetic field properties, velocity, temperature and density. The wind also differs based on where on the sun it comes from and how quickly that portion is rotating.

The velocity of the solar wind is higher over coronal holes, reaching speeds of up to 500 miles (800 kilometers) per second. The temperature and density over coronal holes are low, and the magnetic field is weak, so the field lines are open to space. These holes occur at the poles and low latitudes, and reach their largest when activity on the sun is at its minimum. Temperatures in the fast wind can reach up to 1 million degrees F (800,000 C).

At the coronal streamer belt around the equator, the solar wind travels more slowly, at around 200 miles (300 km) per second. Temperatures in the slow wind reach up to 2.9 million F (1.6 million C).

p.s

Glad to help you and if you need anything else on brainly let me know so I can elp you again have an AWESOME!!! :^)
4 0
2 years ago
An object is traveling on a circle with a radius of 6 feet. If in 80 seconds a central angle of 9/4 radians is swept out, then f
trapecia [35]

Answer:

The angular speed of the object is 0.0281 rad/s

The linear speed of the object is 0.169 ft/s

Explanation:

Given;

radius of the circle, r = 6 ft

time of motion of the object around the circle, t = 80 s

central angle formed by the object during the motion, θ = 9/4 rad = 2.25 rad

The angular speed of the object is calculated as;

\omega = \frac{\theta }{t} = \frac{2.25 \ rad}{80 \ s} = 0.0281 \ rad/s

The linear speed of the object is calculated as;

v = ωr

v = 0.0281 rad/s   x    6ft

v = 0.169 ft/s

8 0
3 years ago
Need help solving this question.
MatroZZZ [7]

Answer:

See the answers below.

Explanation:

to solve this problem we must make a free body diagram, with the forces acting on the metal rod.

i)

The center of gravity of the rod is concentrated in half the distance, that is, from the end of the bar to the center there is 40 [cm]. This can be seen in the attached free body diagram.

We have only two equilibrium equations, a summation of forces on the Y-axis equal to zero, and a summation of moments on any point equal to zero.

For the summation of forces we will take the forces upwards as positive and the negative forces downwards.

ΣF = 0

-15+T-W=0\\T-W=15

Now we perform a sum of moments equal to zero around the point of attachment of the string with the metal bar. Let's take as a positive the moment of the force that rotates the metal bar counterclockwise.

ii) In the free body diagram we can see that the force acts at 18 [cm] of the string.

ΣM = 0

(15*9) - (18*W) = 0\\135 = 18*W\\W = 7.5 [N]

7 0
2 years ago
One difference between a hypothesis and a theory is that a hypothesis
artcher [175]
A hypothesis is a tentative statement which is made to try to explain a known phenomenon but whose truth value is still uncertain, whether it is true or no depends on further research. On the other hand, a theory is made up of hypothesis which have been proven to be true so far, a theory should be able to explain future phenomena successfully
3 0
3 years ago
Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
anzhelika [568]

A) The velocity of sphere A after the collision is 1.00 m/s to the right

B) The collision is elastic

C) The velocity of sphere C is 2.68 m/s at a direction of -5.2^{\circ}

D) The impulse exerted on C is 4.29 kg m/s at a direction of -5.2^{\circ}

E) The collision is inelastic

F) The velocity of the center of mass of the system is 4.00 m/s to the right

Explanation:

A)

We can solve this part by using the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision:

p_i = p_f\\m_A u_A + m_B u_B = m_A v_A + m_B v_B

m_A = 0.600 kg is the mass of sphere A

u_A = 4.00 m/s is the initial velocity of the sphere A (taking the right as positive direction)

v_A is the final velocity of sphere A

m_B = 1.80 kg is the mass of sphere B

u_B = 2.00 m/s is the initial velocity of the sphere B

v_B = 3.00 m/s is the final velocity of the sphere B

Solving for vA:

v_A = \frac{m_A u_A + m_B u_B - m_B v_B}{m_A}=\frac{(0.600)(4.00)+(1.80)(2.00)-(1.80)(3.00)}{0.600}=1.00 m/s

The sign is positive, so the direction is to the right.

B)

To verify if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

Before the collision:

K_i = \frac{1}{2}m_A u_A^2 + \frac{1}{2}m_B u_B^2 =\frac{1}{2}(0.600)(4.00)^2 + \frac{1}{2}(1.80)(2.00)^2=8.4 J

After the collision:

K_f = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}(0.600)(1.00)^2 + \frac{1}{2}(1.80)(3.00)^2=8.4 J

The total kinetic energy is conserved: therefore, the collision is elastic.

C)

Now we analyze the collision between sphere B and C. Again, we apply the law of conservation of momentum, but in two dimensions: so, the total momentum must be conserved both on the x- and on the y- direction.

Taking the initial direction of sphere B as positive x-direction, the total momentum before the collision along the x-axis is:

p_x = m_B v_B = (1.80)(3.00)=5.40 kg m/s

While the total momentum along the y-axis is zero:

p_y = 0

We can now write the equations of conservation of momentum along the two directions as follows:

p_x = p'_{Bx} + p'_{Cx}\\0 = p'_{By} + p'_{Cy} (1)

We also know the components of the momentum of B after the collision:

p'_{Bx}=(1.20)(cos 19)=1.13 kg m/s\\p'_{By}=(1.20)(sin 19)=0.39 kg m/s

So substituting into (1), we find the components of the momentum of C after the collision:

p'_{Cx}=p_B - p'_{Bx}=5.40 - 1.13=4.27 kg m/s\\p'_{Cy}=p_C - p'_{Cy}=0-0.39 = -0.39 kg m/s

So the magnitude of the momentum of C is

p'_C = \sqrt{p_{Cx}^2+p_{Cy}^2}=\sqrt{4.27^2+(-0.39)^2}=4.29 kg m/s

Dividing by the mass of C (1.60 kg), we find the magnitude of the velocity:

v_c = \frac{p_C}{m_C}=\frac{4.29}{1.60}=2.68 m/s

And the direction is

\theta=tan^{-1}(\frac{p_y}{p_x})=tan^{-1}(\frac{-0.39}{4.27})=-5.2^{\circ}

D)

The impulse imparted by B to C is equal to the change in momentum of C.

The initial momentum of C is zero, since it was at rest:

p_C = 0

While the final momentum is:

p'_C = 4.29 kg m/s

So the magnitude of the impulse exerted on C is

I=p'_C - p_C = 4.29 - 0 = 4.29 kg m/s

And the direction is the angle between the direction of the final momentum and the direction of the initial momentum: since the initial momentum is zero, the angle is simply equal to the angle of the final momentum, therefore -5.2^{\circ}.

E)

To check if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

The total kinetic energy before the collision is just the kinetic energy of B, since C was at rest:

K_i = \frac{1}{2}m_B u_B^2 = \frac{1}{2}(1.80)(3.00)^2=8.1 J

The total kinetic energy after the collision is the sum of the kinetic energies of B and C:

K_f = \frac{1}{2}m_B v_B^2 + \frac{1}{2}m_C v_C^2 = \frac{1}{2}(1.80)(1.20)^2 + \frac{1}{2}(1.60)(2.68)^2=7.0 J

Since the total kinetic energy is not conserved, the collision is inelastic.

F)

Here we notice that the system is isolated: so there are no external forces acting on the system, and this means the system has no acceleration, according to Newton's second law:

F=Ma

Since F = 0, then a = 0, and so the center of mass of the system moves at constant velocity.

Therefore, the centre of mass after the 2nd collision must be equal to the velocity of the centre of mass before the 1st collision: which is the velocity of the sphere A before the 1st collision (because the other 2 spheres were at rest), so it is simply 4.00 m/s to the right.

Learn more about momentum and collisions:

brainly.com/question/6439920

brainly.com/question/2990238

brainly.com/question/7973509

brainly.com/question/6573742

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • Consider a system to be one train car moving toward another train car at rest. When the trains collide, the two cars stick toget
    8·2 answers
  • An object acted on by three forces moves with constant velocity. One force acting on the object is in the positive xx direction
    14·1 answer
  • What’s the difference between the resistance of 1,000 feet of aluminum No. 14 wire and 1,000 feet of No. 14 copper wire? A. The
    9·1 answer
  • What is endurance? a). the ability to run faster b). a combination of balance and coordination c). how much you can stretch d).
    15·1 answer
  • A 1.15-kg mass oscillates according to the equation where x is in meters and in seconds. Determine (a) the amplitude, (b) the fr
    9·1 answer
  • Kevin is refinishing his rusty wheelbarrow. He moves his sandpaper back and forth 45 times over a rusty area, each time moving a
    10·1 answer
  • What's the answers for all of the questions ?///
    11·1 answer
  • Please view attached images. The first one is #2 and the second one is #1.
    13·1 answer
  • A scalar is a value that:
    7·1 answer
  • What makes the planets gravity?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!