the main difference is that bacteria are free-living cells that can live inside or outside a body, while viruses are a non-living collection of molecules that need a host to survive.
Many bacteria help us: living in our gut digesting and helping absorption of our food, fixing nitrogen and decomposing organic materials in soil. Similarly, not all viruses are bad—we now know there are also beneficial viruses present in our gut, skin and blood that can kill undesirable bacteria and more dangerous viruses.
Answer: Replication
Explanation: When the cell is preparing to divide it will <u>replicate</u> its DNA so that both of the daughter cells will have a complete set of the DNA. It's like a book of instructions and the cell has to perfectly replicate it so that when it splits into two both of the new cells will have a perfectly made copy of it! Hope this helps :)
Answer:
The answer is C) They appear to be the molecular carriers of coded hereditary information.
Explanation:
Why NOT C) They appear to be the molecular carriers of coded hereditary information?
This is the job of the nucleic acids. It is composed of nucleotides which are the basic units of DNA and RNA. They carry genetic information about a certain organism.
<h3 /><h3>True of proteins:</h3>
A) They may be denatured or coagulated by heat or acidity.
<u>Denaturation</u> is the <u>destruction of the protein's secondary and/or tertiary structures</u>. The <u>primary structure is not disrupted due to the tough peptide bonds</u> and can only be broken down by acid. For heat denaturation, hydrogen bonds are destroyed, as in cooking of egg whites and medical equipment sterilization.
B) They have both functional and structural roles in the body.
There are many kinds of proteins that have functional and structural roles like hormones <u>(FSH, LH)</u>, antibodies <u>(IgA, IgM),</u> enzymes <u>(lipase, amylase),</u> for storage/transport <u>(hemoglobin, ferritin)</u>, and locomotion <u>(actin, troponin).</u>
D) Their function depends on their three-dimensional shape.
Just like <u>hemoglobin</u>, it's <u>quaternary structure</u> can carry <u>4 molecules of iron</u> in one go. <u>Enzymes</u> are shaped accordingly to fit a<u> specific substrate</u> <em>(lock-and-key model)</em>