Step-by-step explanation:
∫ dt / (cos²(t) ⁹√(1 + tan(t)))
If u = 1 + tan(t), then du = sec²(t) dt.
∫ du / ⁹√u
∫ u^(-1/9) du
9/8 u^(8/9) + C
9/8 (1 + tan(t))^(8/9) + C
Multiply <span><span>−1</span><span>-1</span></span> by <span><span>−7</span><span>-7</span></span> to get <span>77</span>.<span><span><span>−4</span>+7</span><span><span>-4</span>+7</span></span>Add <span><span>−4</span><span>-4</span></span> and <span>77</span> to get <span>33</span>.Answer =3
For rhombus A:
base = 7 in
area = 35 in²
Area of rhombus = b * h
⇒ 35 = 7 * h
⇒ h = 35/7
⇒ h = 5 in
Rhombus B:
height = 3*5 = 15 in
base = 7*3 = 21 in
Area = 15 * 21 = 315 in
Area of rhombus B is 9 times area of rhombus A. When the dimensions are increased to 3 times the initial dimension, area became 9 times.