m ∠b = 133°, m ∠c = 47°, and m ∠d = 133°.
<h3>
Further explanation</h3>
Follow the attached picture. I sincerely hope that's precisely a correct illustration.
We will use a graph of two intersecting straight lines.
Note that m ∠a and m ∠c are vertical angles. Since vertical angles share the same measures, in other words always congruent, we see 
We continue to determine m ∠b and m ∠d.
Note that m ∠b and m ∠d represent supplementary angles. Recall that supplementary angles add up to 180°.
Let us see the following steps.


Both sides subtracted by 47°.

Thus 
Finally, note that m ∠b and m ∠d are vertical angles. Accordingly, 
<u>Conclusion:</u>
- m ∠a = 47°
- m ∠b = 133°
- m ∠c = 47°
- m ∠d = 133°
<u>Notes:</u>
- Supplementary angles are two angles when they add up to 180°.

- Vertical angles are the angles opposite each other when two lines cross. Note that vertical angles are always congruent, or of equal measure.

<h3>Learn more</h3>
- About the measure of the central angle brainly.com/question/2115496
- Undefined terms needed to define angles brainly.com/question/3717797
- Find out the measures of the two angles in a right triangle brainly.com/question/4302397
Keywords: m∠a = 47°, m∠b, m∠c, and m∠d, 133°, vertical angles, supplementary, 180°, congruent
Answer:
c
Step-by-step explanation:
translations assignment
Answer:
y/mz
Step-by-step explanation:
Answer:
See explanation
Step-by-step explanation:
Given:
![A=\left[\begin{array}{cc}-2&4\\1&3\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%264%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D)
![B=\left[\begin{array}{cc}-2&1\\3&7\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%261%5C%5C3%267%5Cend%7Barray%7D%5Cright%5D)
A. Find AB:
![AB=\left[\begin{array}{cc}-2&4\\1&3\end{array}\right]\cdot \left[\begin{array}{cc}-2&1\\3&7\end{array}\right]=\left[\begin{array}{cc}-2\cdot (-2)+4\cdot 3&-2\cdot 1+4\cdot 7\\1\cdot (-2)+3\cdot 3&1\cdot 1+3\cdot 7\end{array}\right]=\left[\begin{array}{cc}16&26\\7&22\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%264%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%261%5C%5C3%267%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%5Ccdot%20%28-2%29%2B4%5Ccdot%203%26-2%5Ccdot%201%2B4%5Ccdot%207%5C%5C1%5Ccdot%20%28-2%29%2B3%5Ccdot%203%261%5Ccdot%201%2B3%5Ccdot%207%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D16%2626%5C%5C7%2622%5Cend%7Barray%7D%5Cright%5D)
B. Find BA:
![BA=\left[\begin{array}{cc}-2&1\\3&7\end{array}\right]\cdot \left[\begin{array}{cc}-2&4\\1&3\end{array}\right]=\left[\begin{array}{cc}-2\cdot (-2)+1\cdot 1&-2\cdot 4+1\cdot 3\\3\cdot (-2)+7\cdot 1&3\cdot 4+7\cdot 3\end{array}\right]=\left[\begin{array}{cc}5&-5\\1&33\end{array}\right]](https://tex.z-dn.net/?f=BA%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%261%5C%5C3%267%5Cend%7Barray%7D%5Cright%5D%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%264%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%5Ccdot%20%28-2%29%2B1%5Ccdot%201%26-2%5Ccdot%204%2B1%5Ccdot%203%5C%5C3%5Ccdot%20%28-2%29%2B7%5Ccdot%201%263%5Ccdot%204%2B7%5Ccdot%203%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%26-5%5C%5C1%2633%5Cend%7Barray%7D%5Cright%5D)
C. Answers are not the same
D. Matrices multiplication is not commutastive in general, so
