I would think A because regular quadrilaterals have 90-degree angles.
Answer:
m-45=-78
25=x+9
x and y are proportional, because they are doubling the outcome every time by 3, so the slope would simplify to 1/4 very time.
Step-by-step explanation:
Answer:
66.5%
Step-by-step explanation:
95.1/143*100=66.5%
Answer: 42°
<u>Step-by-step explanation:</u>
HJ is an angle bisector of ∠IHK so
∠IHJ ≅ ∠KHJ ⇒ m∠IHJ = m∠KHJ
3a + 6 = 5a - 18
6 = 2a - 18
24 = 2a
12 = a
∠IHJ = 3a + 6
= 3(12) + 6
= 36 + 6
= 42
Answer:
![9\text{ln}|x|+2\sqrt{x}+x+C](https://tex.z-dn.net/?f=9%5Ctext%7Bln%7D%7Cx%7C%2B2%5Csqrt%7Bx%7D%2Bx%2BC)
Step-by-step explanation:
We have been an integral
. We are asked to find the general solution for the given indefinite integral.
We can rewrite our given integral as:
![\int \frac{9}{x}+\frac{\sqrt{x}}{x}+\frac{x}{x}dx](https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7B9%7D%7Bx%7D%2B%5Cfrac%7B%5Csqrt%7Bx%7D%7D%7Bx%7D%2B%5Cfrac%7Bx%7D%7Bx%7Ddx)
![\int \frac{9}{x}+\frac{1}{\sqrt{x}}+1dx](https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7B9%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%7D%7D%2B1dx)
Now, we will apply the sum rule of integrals as:
![\int \frac{9}{x}dx+\int \frac{1}{\sqrt{x}}dx+\int 1dx](https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7B9%7D%7Bx%7Ddx%2B%5Cint%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%7D%7Ddx%2B%5Cint%201dx)
![9\int \frac{1}{x}dx+\int x^{-\frac{1}{2}}dx+\int 1dx](https://tex.z-dn.net/?f=9%5Cint%20%5Cfrac%7B1%7D%7Bx%7Ddx%2B%5Cint%20x%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7Ddx%2B%5Cint%201dx)
Using common integral
, we will get:
![9\text{ln}|x|+\int x^{-\frac{1}{2}}dx+\int 1dx](https://tex.z-dn.net/?f=9%5Ctext%7Bln%7D%7Cx%7C%2B%5Cint%20x%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7Ddx%2B%5Cint%201dx)
Now, we will use power rule of integrals as:
![9\text{ln}|x|+\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+\int 1dx](https://tex.z-dn.net/?f=9%5Ctext%7Bln%7D%7Cx%7C%2B%5Cfrac%7Bx%5E%7B-%5Cfrac%7B1%7D%7B2%7D%2B1%7D%7D%7B-%5Cfrac%7B1%7D%7B2%7D%2B1%7D%2B%5Cint%201dx)
![9\text{ln}|x|+\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+\int 1dx](https://tex.z-dn.net/?f=9%5Ctext%7Bln%7D%7Cx%7C%2B%5Cfrac%7Bx%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%2B%5Cint%201dx)
![9\text{ln}|x|+2x^{\frac{1}{2}}+\int 1dx](https://tex.z-dn.net/?f=9%5Ctext%7Bln%7D%7Cx%7C%2B2x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%2B%5Cint%201dx)
![9\text{ln}|x|+2\sqrt{x}+\int 1dx](https://tex.z-dn.net/?f=9%5Ctext%7Bln%7D%7Cx%7C%2B2%5Csqrt%7Bx%7D%2B%5Cint%201dx)
We know that integral of a constant is equal to constant times x, so integral of 1 would be x.
![9\text{ln}|x|+2\sqrt{x}+x+C](https://tex.z-dn.net/?f=9%5Ctext%7Bln%7D%7Cx%7C%2B2%5Csqrt%7Bx%7D%2Bx%2BC)
Therefore, our required integral would be
.