The answer is: 
The inverse of a function
is another function,
, with the following property:

In other words, the inverse of a function does exactly "the opposite" of what the original function does, and so if you compute them both in sequence you return to the starting point.
Think for example to a function that doubles the input,
, and one that halves it:
. Their composition is clearly the identity function
, since you consider "twice the half of something", or "half the double of something".
In general, to invert a function
, you have to solve the expression for
, writing an expression like
. If you manage to do so, then
is the inverse of
.
In your case, you have

Multiply both sides by
to get

Square both sides to get

Finally, subtract 3 from both sides to get

Since the name of the variables doesn't really have a meaning, you can say that the inverse function is

As for the domain of the inverse function, remember what we said ad the beginning: if the original function goes from set A (domain) to set B (codomain), then the inverse function goes from set B (domain) to set A (codomain). This means that the inverse function is defined on an element in B if and only if that element belongs to the range of the original function, i.e. the set of the elements of the codomain
such that there exists
. So, we need the range of
.
We know that the range of
is
. When you transform it to
you simply translate the graph horizontally, so the range doesn't change. But when you multiply the function times
you affect both extrema of the range, turning it into
, which you can simply write as 
Answer:
-3 and 2
Step-by-step explanation:
Answer:
6
Step-by-step explanation:
Cost per item is found by dividing the cost by the number of items. If the woman bought n items for $120, the cost of each item is $120/n. If the woman bought 24 more items, n+24, at the same price, then the cost per item is $120/(n+24). The problem statement tells us this last cost is $16 less than the first cost:
120/(n+24) = (120/n) -16
Multiplying by n(n+24) gives ...
120n = 120(n+24) -16(n)(n+24)
0 = 120·24 -16n^2 -16·24n . . . . . . subtract 120n and collect terms
n^2 +24n -180 = 0 . . . . . . . . . . . . . divide by -16 to make the numbers smaller
(n +30)(n -6) = 0 . . . . . . . . . . . . . . factor the quadratic
The solutions to this are the values of n that make the factors zero: n = -30, n = 6. The negative value of n has no meaning in this context, so n=6 is the solution to the equation.
The woman bought 6 items.
_____
Check
When the woman bought 6 items for $120, she paid $120/6 = $20 for each of them. If she bought 6+24 = 30 items for the same money, she would pay $120/30 = $4 for each item. That amount, $4, is $16 less than the $20 she paid for each item.
Answer: Yes these triangles are similar
Step-by-step explanation:
First lets write down what we know just to make life easier
x=9
TL should be similar to CH
LY should be similar to KH
The angles should be equal due to SAS
So the first thing we know is true is the fact that they have equal angles. Now we have to find out if the sides are similar or if they change by the same ratio to the other. If TL is similar to CH and TL=25 and CH=10 what is the change in size or dilation. Division should do the trick so 25/10=2.5 so TY is greater than CH by a factor of 10. Which means that LY should also be greater than KH by a factor of 2.5. If we are told that x=9 than side LY or 4(9)-1=35 and KH 9+5=14
So side KH is 14 and LY is 35. Now to check if they are similar then KH should be greater by a factor of 2.5. If this is not true than the sides are not similar. 35/2.5=14
Since 35 divided by 2.5 is 14 we can tell both sides TL and LY are greater than KH and CH by a factor of 2.5
Hope this helps.
Answer:
I would say 1.5in
Step-by-step explanation: