Answer:
the first and last ones
Step-by-step explanation:
Using the diagonal dimension and the height we can solve for the diameter of the cylinder using the Pythagorean theorem.
x^2 + 9.5^2 = 19.3^2
x^2 + 90.25 = 372.49
x^2 = 372.49 - 90.25
x^2 = 282.24
x = √282.24
x = 16.8
Now we know the diamteer and height, we can calculate the volume using the formula V = pi * r^2 * h
r = 1/2 the diameter = 16.8/2 = 8.4
using 3.14 for pi
Volume = 3.14 * 8.4^2 * 9.5
V = 3.14 * 70.56 * 9.5
v = 3.14 * 670.32
v = 2104.8 cubic meters
Answer:
SA = 156π
Step-by-step explanation:
The formula for surface area of a cylinder is
SA = 2πr² + 2πrh where r is the base radius, and h is the height.
We are given r = 6 and h = 7. Plug in those values and evaluate...
SA = 2π(6²) + 2π(6)(7)
SA = 2π(36) + 2π(42)
SA = 72π + 84π
SA = 156π
Answer:
a_{n} = a_{1} + (n-1)d
a_n = the nᵗʰ term in the sequence
a_1 = the first term in the sequence
d = the common difference between terms
The general term of an arithmetic sequence can be written in terms of its first term a1, common difference d, and index n as follows: an=a1+(n−1)d. ... The nth partial sum of an arithmetic sequence can be calculated using the first and last terms as follows: Sn=n(a1+an)2.