Answer:
Keenan's z-score was of 0.61.
Rachel's z-score was of 0.81.
Step-by-step explanation:
Z-score:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Keenan scored 80 points on an exam that had a mean score of 77 points and a standard deviation of 4.9 points.
This means that 
So



Keenan's z-score was of 0.61.
Rachel scored 78 points on an exam that had a mean score of 75 points and a standard deviation of 3.7 points.
This means that
. So



Rachel's z-score was of 0.81.
Step-by-step explanation:
Translations: When a figure is slid to another place on the coordinate grid (for example if i asked you to move the figure 2 units down and 4 units to the left)
Reflected: When a figure is reflected across the y-axis or the x-axis and both figures are congruent to each other.
Rotated: When a figure is rotated (for example if i asked you to rotate the figure 90 degrees)
Twenty-six and seventeen hundredths