1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Len [333]
3 years ago
8

Please help meeeeeeeeeeeeeeeeeeeeeeeeeeee

Mathematics
1 answer:
BabaBlast [244]3 years ago
4 0
It would be the last one
You might be interested in
Subtract 1/4w + 4 from 1/2w + 3
solniwko [45]
The answer is 1/4w - 1
7 0
3 years ago
Read 2 more answers
james determined that these two expressions were equivalent expressions using the values of x=4 and x=6 which statements are tru
valentina_108 [34]

Answer: I got 1, 4, and 7

brainlist plz:)

Step-by-step explanation:

4 0
3 years ago
A zoo train ride costs $4 per adult and $1 per child. On a certain day, the total number of adults (a) and children (c) who took
lilavasa [31]
Its all about process of elimination. Answer C
4 0
3 years ago
Use the form of the definition of the integral given in the theorem to evaluate the integral. ∫ 0 − 2 ( 7 x 2 + 7 x ) d x
Murrr4er [49]

Answer:

\int _{-2}^07x^2+7xdx=\frac{14}{3}

Step-by-step explanation:

The definite integral of a continuous function <em>f</em> over the interval [a,b] denoted by \int\limits^b_a {f(x)} \, dx, is the limit of a Riemann sum as the number of subdivisions approaches infinity. That is,

\int\limits^b_a {f(x)} \, dx=\lim_{n \to \infty} \sum_{i=1}^{n}\Delta x \cdot f(x_i)

where \Delta x = \frac{b-a}{n} and x_i=a+\Delta x\cdot i

To evaluate the integral

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx

you must:

Find \Delta x

\Delta x = \frac{b-a}{n}=\frac{0+2}{n}=\frac{2}{n}

Find x_i

x_i=a+\Delta x\cdot i\\x_i=-2+\frac{2i}{n}

Therefore,

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} f(-2+\frac{2i}{n})

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx=\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7[(-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})]\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} 4-\frac{8i}{n}+\frac{4i^2}{n^2} -2+\frac{2i}{n}\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2

\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2\\\\\lim_{n \to \infty}\frac{14}{n}[ \sum_{i=1}^{n} \frac{4i^2}{n^2}-\sum_{i=1}^{n}\frac{6i}{n}+\sum_{i=1}^{n}2]\\\\\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\sum_{i=1}^{n}i^2 -\frac{6}{n}\sum_{i=1}^{n}i+\sum_{i=1}^{n}2]

We can use the facts that

\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}

\sum_{i=1}^{n}i=\frac{n(n+1)}{2}

\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\cdot \frac{n(n+1)(2n+1)}{6}-\frac{6}{n}\cdot  \frac{n(n+1)}{2}+2n]\\\\\lim_{n \to \infty}\frac{14}{n}[-n+\frac{2\left(n+1\right)\left(2n+1\right)}{3n}-3]\\\\\lim_{n \to \infty}\frac{14\left(n^2-3n+2\right)}{3n^2}

\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(\frac{n^2-3n+2}{n^2}\right)\\\\\mathrm{Divide\:by\:highest\:denominator\:power:}\:1-\frac{3}{n}+\frac{2}{n^2}\\\\\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(1-\frac{3}{n}+\frac{2}{n^2}\right)\\\\\frac{14}{3}\left(\lim _{n\to \infty \:}\left(1\right)-\lim _{n\to \infty \:}\left(\frac{3}{n}\right)+\lim _{n\to \infty \:}\left(\frac{2}{n^2}\right)\right)\\\\\frac{14}{3}\left(1-0+0\right)\\\\\frac{14}{3}

Thus,

\int _{-2}^07x^2+7xdx=\frac{14}{3}

5 0
4 years ago
If the vertex of a parabola is (-4, 6) and another point on the curve is (-3, 14), what is the coefficient of the squared expres
Luda [366]
\bf \qquad \textit{parabola vertex form}\\\\\begin{array}{llll}&#10;\boxed{y=a(x-{{ h}})^2+{{ k}}}\\\\&#10;x=a(y-{{ k}})^2+{{ h}}&#10;\end{array}\qquad\qquad  vertex\ ({{ h}},{{ k}})\\\\&#10;-------------------------------\\\\&#10;vertex\ (-4,6)\qquad &#10;\begin{cases}&#10;h=-4\\&#10;k=6&#10;\end{cases}\implies y=a(x-(-4))^2+6&#10;\\\\\\&#10;y=a(x+4)^2+6&#10;\\\\\\&#10;\textit{we also know that }&#10;\begin{cases}&#10;x=-3\\&#10;y=14&#10;\end{cases}\implies 14=a(-3+4)^2+6

solve for "a"
8 0
4 years ago
Other questions:
  • ΔABC is dilated from the origin at a scale factor of 3 to create ΔA′B′C′. Select the option that completes the statement: The tr
    11·2 answers
  • Steven earns extra money babysitting. He charges $34.50 for 6 hours and $46.00 for 8 hours.
    7·1 answer
  • Two sides of a right triangle measure 5 inches and 6 inches, and the third side measures√61 inches.The length of the third side
    12·2 answers
  • What is when six is added to three more than a certain number the result is 21 what is the number
    7·1 answer
  • Please help with numbers 5 and 6.
    9·1 answer
  • Lady Gaga bought a package of pens for $2.25 and some pencils that cost $.30 each she paid a total of $4.65 for these items befo
    6·1 answer
  • Environmental impact assessments are required by law in order for _______.
    9·1 answer
  • Find the measure of the sides of an equilateral triangle with a perimeter of 108 cm.​
    8·2 answers
  • 97 divided by 17 between what two consecutive whole numbers does the value lie? A: Between 3 and 4 | B: Between 5 and 6 | C: Bet
    5·1 answer
  • A bookstore sells 7 books for $59.50. Which table represents the relationship between number of books and the total price?​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!