Answer:
greater than
Step-by-step explanation:
Given that the sides of the acute triangle are as follows:
21 cm
x cm
2x cm
Stated that 21 cm is one of the shorter sides of the triangle2x is greater than x, so it follows that 2x MUST be the longest side
For acute triangles, the longest side must be less than the sum of the 2 shorter sides
Therefore, 2x < x + 21cm
2x – x < 21cm
x < 21cm
If x < 21cm, then 2x < 42cm
Therefore, the longest possible length for the longest side is 42cm
Length of deck is 40 feet
<h3><u><em>Solution:</em></u></h3>
Sam wants the deck to have an overall perimeter of 60 feet
Perimeter of rectangular deck = 60 feet
Let "L" be the length of rectangle and "W" be the width of rectangle
Given that plans for a rectangular deck call for the width to be 10 feet less than the length
Width = length - 10
W = L - 10 ------ eqn 1
<em><u>The perimeter of rectangle is given as:</u></em>
perimeter of rectangle = 2(length + width)
Substituting the known values we get,
60 = 2(L + L - 10)
60 = 2(2L - 10)
60 = 4L - 20
80 = 4L
L = 20
Thus the length of deck is 20 feet
Answer:
43cm
Step-by-step explanation:
96-10 (5 x2 sides)=86
86/2 sides=43 longest side
Answer:
14cm
Step-by-step explanation:
times by 2