1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WINSTONCH [101]
3 years ago
13

What is needed to fossilize a mammal versus a plant?

Biology
1 answer:
Temka [501]3 years ago
5 0

Answer:

The body must be safe from decomposition

You might be interested in
During a growth spurt, which is (are) likely to grow first?
dlinn [17]

The answer are the hands and feet.  It is the continuously changes of the characteristics of the body, most noticeable in height and weight.  The ages 13-15 and 17-18 the two major brain growth spurts occur. In times of growth spurts the changes is visible during the first year of puberty.

4 0
3 years ago
Orange trees planted in a grove or orchard would most likely fall in which category of population distribution?
Firlakuza [10]
They would fall in the clumped or even category
5 0
2 years ago
Three linked autosomal loci were studied in smurfs.
cupoosta [38]

Answer:

height -------- color --------- mood

           (13.2cM)      (14.5cM)

C=0.421

I = 0.579

Explanation:

We have the number of descendants of each phenotype product of the tri-hybrid cross.

Phenotype Number

  • pink, tall, happy            580
  • blue, dwarf, gloomy     601
  • pink, tall, gloomy         113
  • blue, dwarf, happy      107
  • blue, tall, happy              8
  • pink, dwarf, gloomy        6
  • blue, tall, gloomy          98
  • pink, dwarf, happy      101

Total number of individuals = 1614 = N

Knowing that the genes are linked, we can calculate genetic distances between them. First, we need to know their order in the chromosome, and to do so, we need to compare the phenotypes of the parental with the ones of the double recombinants. We can recognize the parental in the descendants because their phenotypes are the most frequent, while the double recombinants are the less frequent. So:

Parental)

  • Pink, tall, happy            580 individuals
  • Blue, dwarf, gloomy      601 individuals

Simple recombinant)

  • Pink Tall Gloomy           113 individuals
  • Blue, Dwarf, Happy       107 individuals
  • Blue Tall Gloomy             98 individuals
  • Pink Dwarf Happy          101 individuals

Double Recombinant)  

  • Blue Tall Happy                 8 individuals
  • Pink  Dwarf Gloomy           6 individuals  

Comparing them we realize that parental and double recombinant individuals differ in the position of the gene codifying for <u>color</u><u>.</u> They only change in the position of Blue and Pink. This suggests that the position of the color gene is in the middle of the other two genes, height and mood, because in a double recombinant only the central gene changes position in the chromatid.  

So, the alphabetic order of the genes is:

---- height ---- color ----- mood ----

Now we will call Region I to the area between Height and Color, and Region II to the area between Color and Mood.

Once established the order of the genes we can calculate distances between them, and we will do it from the central gene to the genes on each side. First We will calculate the recombination frequencies, and we will do it by region. We will call P1 to the recombination frequency between Height and color genes, and P2 to the recombination frequency between color and mood.

P1 = (R + DR) / N

P2 = (R + DR)/ N

Where: R is the number of recombinants in each region (the ones that have an intermediate phenotypic frequency), DR is the number of double recombinants in each region, and N is the total number of individuals.  So:

Region I

Tall------ Pink--------happy  (Parental) 580 individuals

Dwarf ---Pink------- Happy (Simple Recombinant) 101 individuals

Dwarf--- Pink-------Gloomy (Double Recombinant) 6 individuals

Dwarf----Blue-------Gloomy (Parental) 601 individuals

Tall ------Blue------- Gloomy (Simple Recombinant)  98 individuals

Tall ----- Blue------- Happy   (Double Recombinant) 8 individuals  

Region II

Tall------ Pink--------happy (Parental) 580 individuals

Tall-------Pink------- Gloomy (Simple Recombinant) 113 individuals

Dwarf----Pink------- Gloomy (Double Recombinant) 6 individuals

Dwarf----Blue-------Gloomy (Parental) 601 individuals

Dwarf ----Blue-------Happy (Simple Recombinant) 107 individuals

Tall ----- Blue------- Happy   (Double Recombinant) 8 individuals

In each region, the highlighted traits are the ones that suffered recombination.

  • P1 = (R + DR) / N

P1 = (101+6+98+8)/1614

P1 = 213/1614

P1 = 0.132    

  • P2= = (R + DR) / N

P2 = (113+6+107+8)/1614

P1 = 234/1614

P1 = 0.145

Now, to calculate the recombination frequency between the two extreme genes, height and mood, we can just perform addition or a sum:

  • P1 + P2= Pt

0.132 + 0.145 = Pt

0.277=Pt

The genetic distance will result from multiplying that frequency by 100 and expressing it in map units (MU). One centiMorgan (cM) equals one map unit (MU).  

The map unit is the distance between the pair of genes for which every 100 meiotic products, one results in a recombinant product.  

Now we must multiply each recombination frequency by 100 to get the genetic distance in map units:

GD1= P1 x 100 = 0.132 x 100 = 13.2 MU = 13.2 cM

GD2= P2 x 100 = 0.145 x 100 = 14.5 MU = 14.5 cM

GD3=Pt x 100 = 0.277 x 100 = 27.7 MU = 27.7 cM

To calculate the coefficient of coincidence, CC, we must use the next formula:

CC= observed double recombinant frequency/expected double recombinant frequency

Note:  

-observed double recombinant frequency=total number of observed double recombinant individuals/total number of individuals

-expected double recombinant frequency: recombination frequency in region I x recombination frequency in region II.

  • CC= ((6 + 8)/1614)/0.132x0.145

        CC=0.008/0.019

        CC=0.421

The coefficient of interference, I, is complementary with CC.

I = 1 - CC

I = 1 - 0.421

I = 0.579

8 0
3 years ago
Procedure
Anni [7]
Can you provide more specific details? I’m not even sure what this question is about.
3 0
3 years ago
Somatic hypermutation of V genes ​
zaharov [31]

Answer:

Somatic hypermutation is a process in which point mutations build up in the antibody V-regions of both the heavy and light chains.

This process occurs at rates that are about 106-fold higher than the background mutation rates observed in other genes.

It allows B cells to mutate the genes that they use to produce antibodies. This then ensures the B cells to produce antibodies that are better able to bind to bacteria, viruses and other infections.

4 0
3 years ago
Other questions:
  • Why does meiosis occur?
    10·1 answer
  • Which muscles can flex, extend and abduct the arm?
    14·2 answers
  • 10 POINTS!!!! name 10 non-contact and contact forces
    5·1 answer
  • 6. Think and discuss: Did the changes you observed in the moth populations result from
    7·1 answer
  • Which rock may result when sedimentary rock is exposed to extreme heat and pressure? A metamorphic B extrusive C igneous D clast
    15·2 answers
  • When measuring wellness, you must consider
    5·1 answer
  • If you have genotypes TTHh and ttHH, what is the probability of getting an offspring that is TtHH?
    11·1 answer
  • Which is an example of a natural disaster that would threaten the survival of
    10·2 answers
  • A frog has more offspring than can survive on available resources.
    6·2 answers
  • Help!!!
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!