Answer:
and 
Step-by-step explanation:
Given

Required
Determine the values of x

Take square root of both sides


Expand 45 as 9 * 5

Split the square root



This can be further split to:
or 
Hence, the possible values of x are
and 
Answer:
Step-by-step explanation:
Given quadratic equation is,
y = -2x² + 4x + 5
y = -2(x² - 2x) + 5
y = -2(x² - 2x + 1 - 1) + 5
y = -2(x² - 2x + 1) + 2 + 5
y = -2(x - 1)² + 7
This equation is in the vertex form of the quadratic equation,
y = a(x - h)² + k
where, (h, k) is the vertex of the parabola.
Therefore, vertex of the given quadratic equation is (1, 7)
The equation can be rewritten as y = -2(x - 1)² + 7.
Therefore, the vertex of the graph of the function y = -2x² + 4x + 5 in the xy-coordinate plane is located at the point (1, 7).
Answer:
4x² + 20x - 2
Step-by-step explanation:
To evaluate (c ○ d)(x), substitute x = d(x) into c(x)
c(x² + 5x)
= 4(x² + 5x) - 2
= 4x² + 20x - 2
Answer:
the last one
3x-y=1
-2x+y=-4
Step-by-step explanation:
Answer:
Step-by-step explanation:
<u>Given </u><u>:</u><u>-</u><u> </u>
And we need to find out the Inverse of the function . Let us assume that f(x) = y . Now , firstly replace x with y and vice versa.
<u>Function</u><u> </u><u>:</u><u>-</u><u> </u>
<u>Interchanging</u><u> </u><u>x </u><u>and </u><u>y </u><u>:</u><u>-</u><u> </u>
<u>Solve </u><u>out</u><u> </u><u>for </u><u>y </u><u>:</u><u>-</u><u> </u>
<u>Replace</u><u> </u><u>y with</u><u> </u><u>f-¹</u><u>(</u><u>x)</u><u> </u><u>:</u><u>-</u><u> </u>
<u>Hence </u><u>the </u><u>inverse</u><u> of</u><u> the</u><u> function</u><u> is</u><u> </u><u>-x/</u><u>4</u><u>-</u><u>3</u><u> </u><u>.</u>