Answer:
Three-fourths
Step-by-step explanation:
see the attached figure to better understand the problem
we know that
∠QSR≅∠XZY ---> given problem
∠QRS≅∠XYZ ---> given problem
so
△QRS ~ △XYZ ----> by AA Similarity theorem
Remember that, if two triangles are similar, then the ratio of its corresponding sides is proportional and its corresponding angles are congruent
That means

∠Q≅∠X
∠R≅∠Y
∠S≅∠Z
<em>In the right triangle XYZ</em>
Find the tangent of angle X
---> opposite side angle X divided by adjacent side angle X
substitute the given values
Simplify
Remember that
∠Q≅∠X
so
therefore
---->Three-fourths
9514 1404 393
Answer:
d. m∠Q = 75 degrees
Step-by-step explanation:
The sum of the angles in a triangle is 180°. This triangle is marked to show it is an isosceles triangle, so the two base angles have the same measure.
∠P +∠Q +∠R = 180°
x° +(2x +15)° +(2x +15)° = 180°
5x = 150 . . . . . . . . . . . . . . . . . . . divide by °, subtract 30
x = 30 . . . . . . . . . . . . . . . . divide by 5
m∠Q = (2x +15)° = (2(30) +15)°
m∠Q = 75°
The reflection of the point (x, y) across the y-axis is the point (-x, y). When you reflect a point across the line y = x, the x-coordinate and the y-coordinate change places. Notice how each point of the original figure and its image are the same distance away from the line of reflection (x = –2 in this example).
Answer:
y/2
Step-by-step explanation:
La distancia entre el barco y la base del acantilado es 291.61 metros.
<h3>
¿Como calcular la distancia?</h3>
Podemos pensar en esta situacion como en un triangulo rectangulo. Uno de los catetos mide 687 metros, que es la altura del acantilado.
Y conocemos el angulo al que ese cateto es adjacente, que mide 23 grados.
La distancia entre la base del acantilado y el barco será el otro cateto del triangulo rectangulo.
Entonces podemos usar la relación:
tan(a) = (cateto opuesto)/(cateto adjacente)
Reemplazando lo que sabemos:
tan(23°) = D/687m
tan(23°)*687m = D = 291.61m
La distancia entre el barco y la base del acantilado es 291.61 metros.
Sí quieres aprender más sobre triangulos rectangulos:
brainly.com/question/2217700
#SPJ1