Answer:
or the fourth answer
Step-by-step explanation:
Apply the rule
to rewrite the exponentiation as a radical.
![5\sqrt[4]{x^1}](https://tex.z-dn.net/?f=5%5Csqrt%5B4%5D%7Bx%5E1%7D)
Anything raised to 1 is the base itself.
Answer = ![5\sqrt[4]{x}](https://tex.z-dn.net/?f=5%5Csqrt%5B4%5D%7Bx%7D)
Plz mark me brainliest, hope this helps.
Answer:
This tells us that:
![A=\left[\begin{array}{ccc}5&7\\5&-8\\3&-9\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%267%5C%5C5%26-8%5C%5C3%26-9%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
So we are saying we have scalars, c and d, such that:
.
So we want to find a way to express this as:
Ax=b where x is the scalar vector,
.
So we can write this as:
![\left[\begin{array}{ccc}5&7\\5&-8\\3&-9\end{array}\right] \left[\begin{array}{ccc}c\\d\end{array}\right] =\left[\begin{array}{ccc}-16\\3\\-15\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%267%5C%5C5%26-8%5C%5C3%26-9%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dc%5C%5Cd%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-16%5C%5C3%5C%5C-15%5Cend%7Barray%7D%5Cright%5D)
.45x+.55x=200
Combine like terms
1x=200
So x is 100
Or you can do 45%+55%=100%
And 100% of 200 is 200
The equation is
.
1/2 is equivalent to 4/8, and 2 1/8 is equal to 17/8. (two full sets of 8 + 1 = 8 + 8 + 1, or 17)
The new equation is
. Subtract the numerators.
17 - 4 = 13 or 13/8
The improper fraction
simplifies to
.
<h2>Answer:</h2>

Hope this helps :)
<h2>
Answer:</h2>
<em><u>Recursive equation for the pattern followed is given by,</u></em>

<h2>
Step-by-step explanation:</h2>
In the question,
The number of interaction for 1 child = 0
Number of interactions for 2 children = 1
Number of interactions for 3 children = 5
Number of interaction for 4 children = 14
So,
We need to find out the pattern for the recursive equation for the given conditions.
So,
We see that,

Therefore, on checking, we observe that,

On checking the equation at the given values of 'n' of, 1, 2, 3 and 4.
<u>At, </u>
<u>n = 1</u>

which is true.
<u>At, </u>
<u>n = 2</u>

Which is also true.
<u>At, </u>
<u>n = 3</u>

Which is true.
<u>At, </u>
<u>n = 4</u>

This is also true at the given value of 'n'.
<em><u>Therefore, the recursive equation for the pattern followed is given by,</u></em>
