Answer:
Step-by-step explanation:
2
(
2
x
−
1
)
+
7
<
13
Expand LHS
→
4
x
−
2
+
7
<
13
4
x
+
5
<
13
4
x
<
13
−
5
4
x
<
8
Divide through by
4
→
x
<
2
x
<
2
is represented on the real line by the interval
(
−
∞
,
2
)
This can be represented on the
x
y
−
plane by the area to the left of the vertical line
x
=
2
as graph below.
graph{2(2x-1)+7<13 [-10, 10, -5, 5]}
Answer:
9* 3 ^ (x-2)
Step-by-step explanation:
g(x) = 3^x
We know a^ (b) * a^(c) = a^ (b+c)
9* 3 ^ (x+2) = 3^2 * 3 ^(x+2) = 3^(2+x+2) = 3^x+4 not equal to 3^x
3*(9^(x+2)) = 3*3^2(x+2) = 3^1 * 3^(2x+4) =3^(2x+4+1) = 3^(2x+5) not equal
9* 3 ^ (x-2) = 3^2 * 3 ^(x-2) = 3^(2+x-2) = 3^x equal to 3^x
3*(9^(x-2)) = 3*3^2(x-2) = 3^1 * 3^(2x-4) =3^(2x-4+1) = 3^(2x-3) not equal
We are given a function of the bouncing of the ball expressed as f(n) = 9(0.7)n in which n is an integer as the number of times the ball has dropped. 9 represents the initial height of the ball and 0.7 is the percent of which the height is reserved
Step-by-step explanation:
You need to translate all the points to the right 3 and up 6
Therefore, you are going to use this formula:
(x,y) ⇾ (x + 3, y + 6)
This is the same format as the previous problem, if you have noticed.
Using this, plug in each coordinate, starting with P (5, -1)
(5, -1) ⇾ ( 5 + 3, -1 + 6)
(5, -1) ⇾ ( 8, 5 )
P
= (8, 5)
Now point Q, (0, 8)
(0, 8) ⇾ (0 + 3, 8 + 6)
(0, 8) ⇾ ( 3, 14 )
Q
= (3, 14)
And last but not least, the point R, (7, 5)
(7, 5) ⇾ (7 + 3, 5 + 6)
(7, 5) ⇾ ( 10, 11 )
R
= (10, 11)
Therefore, P
= (8, 5), Q
= (3, 14), R
= (10, 11) is your answer. This is the 4th option or D.
Hope this for you to understand this a bit more! =D