1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alekssr [168]
3 years ago
9

Determine the following indefinite integrals. Check your work by differentiation.

Mathematics
1 answer:
marysya [2.9K]3 years ago
4 0

Answer:

\displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = 3x^\bigg{\frac{4}{3}} - \frac{3x^\bigg{\frac{2}{3}}}{2} + C

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx

<u>Step 2: Integrate</u>

  1. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = \int {4x^\bigg{\frac{1}{3}}} \, dx - \int {x^\bigg{\frac{-1}{3}}} \, dx
  2. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:             \displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = 4\int {x^\bigg{\frac{1}{3}}} \, dx - \int {x^\bigg{\frac{-1}{3}}} \, dx
  3. [Integrals] Reverse Power Rule:                                                                   \displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = 4 \bigg( \frac{3x^\bigg{\frac{4}{3}}}{4} \bigg) - \frac{3x^\bigg{\frac{2}{3}}}{2} + C
  4. Simplify:                                                                                                         \displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = 3x^\bigg{\frac{4}{3}} - \frac{3x^\bigg{\frac{2}{3}}}{2} + C

<u>Step 3: Check</u>

<em>Differentiate the answer.</em>

  1. Rewrite [Derivative Property - Addition/Subtraction]:                                 \displaystyle \frac{d}{dx} \bigg[ 3x^\bigg{\frac{4}{3}} \bigg] - \frac{d}{dx} \bigg[ \frac{3x^\bigg{\frac{2}{3}}}{2} \bigg] + \frac{d}{dx} \bigg[ C \bigg]
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle 3\frac{d}{dx} \bigg[ x^\bigg{\frac{4}{3}} \bigg] - \frac{3}{2}\frac{d}{dx} \bigg[ x^\bigg{\frac{2}{3}} \bigg] + \frac{d}{dx} \bigg[ C \bigg]
  3. Basic Power Rule:                                                                                         \displaystyle 3 \bigg( \frac{4}{3}x^\bigg{\frac{1}{3}} \bigg) - \frac{3}{2} \bigg( \frac{2}{3}x^\bigg{\frac{-1}{3}} \bigg)
  4. Simplify:                                                                                                         \displaystyle 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}}

∴ we have found the answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
Use the graph to complete the statement. O is the origin.<br><br> T&lt;2,1&gt; ο r(90°,O) : (4,-1)
faltersainse [42]

Answer:

(3,5)

Step-by-step explanation:

5 0
3 years ago
Will the Brainliest answer!!!<br><br> solve for x and y.<br><br> 946x+642y=911
Ronch [10]

While you cannot solve 946x+642y=911 for numerical values of x and y, you can indeed solve 946x+642y=911 first for x and then for y:

-911 - 642y

For x: 946x+642y=911 becomes 946x = 911 - 642y, or x = ------------------

946

911-946x

For y: 946x+642y=911 becomes 642y = 911-946x, or y = ---------------

642

8 0
4 years ago
Read 2 more answers
URGENT!! Solve the following for θ, in radians, where 0≤θ&lt;2π.
lidiya [134]

Answer:   0.93 radians & 2.21 radians

<u>Step-by-step explanation:</u>

-4sin^2\theta-3sin\theta+5=0\\\\\text{Since this is not factorable, use the quadratic formula to find the roots:}\\\\sin\theta=\dfrac{-(-3)\pm \sqrt{(-3)^2-4(-4)(5)}}{2(-4)}\\\\\\.\quad=\dfrac{3\pm \sqrt{9+80}}{-8}\\\\\\.\quad=\dfrac{3\pm\sqrt{89}}{-8}\\\\\\.\quad=\dfrac{3\pm9.43}{-8}\\\\\\.\quad=\dfrac{12.43}{-8}\quad and\quad \dfrac{-6.43}{-8}\\\\\\.\quad=-1.55\quad and\quad 0.80\\\\\\\theta=sin^{-1}(-1.55)\quad and\quad \theta=sin^{-1}(0.80)

\theta=not\ valid\qquad and\quad \theta=0.927

\theta = 0.927\ radians\text{\ in the 1st quadrant and}\\\pi-0.927=2.21\ radians\text{\ in the 2nd quadrant}

6 0
4 years ago
Read 2 more answers
4(5x-3)=48<br><img src="https://tex.z-dn.net/?f=4%285x%20-%203%29%3D%2048" id="TexFormula1" title="4(5x - 3)= 48" alt="4(5x - 3)
krek1111 [17]
Hello, My Dear Friend!

Solution for 4(5x-3)=48 equation:

<span>Simplifying:
</span>4(5x + -3) = 48<span>

</span><span>Reorder the terms:
</span>4(-3 + 5x) = 48
(-3 * 4 + 5x * 4) = 48
(-12 + 20x) = 48<span>

</span><span>Solving:
</span>-12 + 20x = 48<span>

</span><span>Solving for variable 'x'.
</span>Move all terms containing x to the left, all other terms to the right.
<span>Add '12' to each side of the equation.
</span>-12 + 12 + 20x = 48 + 12<span>

</span>Combine like terms: -12 + 12 = 00 + 20x = 48 + 12
20x = 48 + 12<span>

</span><span>Combine like terms: </span>48 + 12 = 60
20x = 60<span>

</span><span>Divide each side by '20'.
</span>x = 3<span>

</span><span>Simplifying:
</span>x = 3<span>

Therefore, THAT is The Answer!^^^ 

</span>=====> x = 3 <=====

I Hope my answer has come to your Help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead! :)

(Ps. Mark As Brainliest IF Helped!)

-UniteTheSeven, UniteTheLeague, Justice League!!! :D

<span>-TheOneAboveAll :)</span>
5 0
4 years ago
What number 5 answer
DanielleElmas [232]
2 or 3 I think is the answer for number 5
7 0
3 years ago
Read 2 more answers
Other questions:
  • Pyramid ABCDE is a square pyramid.<br><br> What is the lateral area of pyramid ABCDE ?
    15·2 answers
  • If M is the midpoint of LN and LN = 27.8 , find the length of MN
    11·1 answer
  • Find the unit rate with the second given unit in the denominator. $57,256 for 586 color printers
    13·1 answer
  • A television company charges $60 for the first half-hour of work and $40 for each additional hour. Blue mountain camp has budget
    11·1 answer
  • How does math help with science
    14·2 answers
  • Name the property of equality that justifies the following statement. If p = q, then p +s = q +s A) Reflexive Property . B) Mult
    12·1 answer
  • Find the value of x​
    7·2 answers
  • Combine like terms. What is a simpler form of the expression?
    11·1 answer
  • A taxi costs $5.50 for the first mile and an additional $0.75 for each additional mile traveled. Which of these
    6·1 answer
  • What happens when supply exceeds demand?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!