1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alekssr [168]
3 years ago
9

Determine the following indefinite integrals. Check your work by differentiation.

Mathematics
1 answer:
marysya [2.9K]3 years ago
4 0

Answer:

\displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = 3x^\bigg{\frac{4}{3}} - \frac{3x^\bigg{\frac{2}{3}}}{2} + C

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx

<u>Step 2: Integrate</u>

  1. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = \int {4x^\bigg{\frac{1}{3}}} \, dx - \int {x^\bigg{\frac{-1}{3}}} \, dx
  2. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:             \displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = 4\int {x^\bigg{\frac{1}{3}}} \, dx - \int {x^\bigg{\frac{-1}{3}}} \, dx
  3. [Integrals] Reverse Power Rule:                                                                   \displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = 4 \bigg( \frac{3x^\bigg{\frac{4}{3}}}{4} \bigg) - \frac{3x^\bigg{\frac{2}{3}}}{2} + C
  4. Simplify:                                                                                                         \displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = 3x^\bigg{\frac{4}{3}} - \frac{3x^\bigg{\frac{2}{3}}}{2} + C

<u>Step 3: Check</u>

<em>Differentiate the answer.</em>

  1. Rewrite [Derivative Property - Addition/Subtraction]:                                 \displaystyle \frac{d}{dx} \bigg[ 3x^\bigg{\frac{4}{3}} \bigg] - \frac{d}{dx} \bigg[ \frac{3x^\bigg{\frac{2}{3}}}{2} \bigg] + \frac{d}{dx} \bigg[ C \bigg]
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle 3\frac{d}{dx} \bigg[ x^\bigg{\frac{4}{3}} \bigg] - \frac{3}{2}\frac{d}{dx} \bigg[ x^\bigg{\frac{2}{3}} \bigg] + \frac{d}{dx} \bigg[ C \bigg]
  3. Basic Power Rule:                                                                                         \displaystyle 3 \bigg( \frac{4}{3}x^\bigg{\frac{1}{3}} \bigg) - \frac{3}{2} \bigg( \frac{2}{3}x^\bigg{\frac{-1}{3}} \bigg)
  4. Simplify:                                                                                                         \displaystyle 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}}

∴ we have found the answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
Find pb, if pj=14 and jb= 28
anyanavicka [17]

Answer:

42

Step-by-step explanation:

Based on the information given, point j is the midpoint, as it is shared by both line segments. Set the equation:

pb = pj + jb

Note:

pj = 14

jb = 28

Plug in the corresponding numbers to the corresponding variables:

pb = pj + jb

pb = 14 + 28

pb = 42

pb = 42 is your answer.

~

3 0
3 years ago
Read 2 more answers
A patient ingests 5 grams of a certain drug which
IgorC [24]

Answer:

8 hours

Step-by-step explanation:

5 - 1 = 4 grams

10% of 5 = 0.5 grams per hour

4/0.5 = 8 hours

8 0
3 years ago
6 out of 13 of your
Tasya [4]

Answer:

46.2%

Step-by-step explanation:

6/13 x 100% = 46.1538461538% (rounded to the nearest tenth: 46.2%)

Hope that helps!

5 0
3 years ago
Read 2 more answers
Given h(x) = 5x + 3. what is the value of h(-11)
alexira [117]

Answer:

h(-11)=-52

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
4.58+y=2.5<br><br> y= ??????
zepelin [54]

Answer:

-2.08

Step-by-step explanation:

If you just switch the problem, to make it 4.58-2.5, you get negative 2.5

6 0
3 years ago
Read 2 more answers
Other questions:
  • Super easy to get pointsss!!! HELPPPP
    13·2 answers
  • Area addition and subtraction
    8·1 answer
  • A group of volunteers has been collecting toys to deliver to a local charity. Over the last 6 days, The volunteers have collecte
    11·1 answer
  • Write in simplest form
    14·1 answer
  • Quadrilateral ABCD ​ is inscribed in a circle.
    12·1 answer
  • Martha was recarpeting her bedroom, which was 15 feet long and 10 feet wide. How many square feet (the area) will she need to pu
    8·1 answer
  • PLSSSSSSSSSSS I MEAN PLS HELP RN ASAPAPPP
    5·1 answer
  • For brainiest:)):):):):):)
    11·2 answers
  • Graph y=2x+1 on a number line<br> Will give brainliest if right.
    15·1 answer
  • What is 50 + 0 x 20 + 10?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!