Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: ![\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
Derivative Property [Addition/Subtraction]: ![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: 
Integration Property [Multiplied Constant]: 
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate</u>
- [Integral] Rewrite [Integration Property - Addition/Subtraction]:

- [1st Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integrals] Reverse Power Rule:

- Simplify:

<u>Step 3: Check</u>
<em>Differentiate the answer.</em>
- Rewrite [Derivative Property - Addition/Subtraction]:
![\displaystyle \frac{d}{dx} \bigg[ 3x^\bigg{\frac{4}{3}} \bigg] - \frac{d}{dx} \bigg[ \frac{3x^\bigg{\frac{2}{3}}}{2} \bigg] + \frac{d}{dx} \bigg[ C \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%203x%5E%5Cbigg%7B%5Cfrac%7B4%7D%7B3%7D%7D%20%5Cbigg%5D%20-%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B3x%5E%5Cbigg%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7B2%7D%20%5Cbigg%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20C%20%5Cbigg%5D)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle 3\frac{d}{dx} \bigg[ x^\bigg{\frac{4}{3}} \bigg] - \frac{3}{2}\frac{d}{dx} \bigg[ x^\bigg{\frac{2}{3}} \bigg] + \frac{d}{dx} \bigg[ C \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%203%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20x%5E%5Cbigg%7B%5Cfrac%7B4%7D%7B3%7D%7D%20%5Cbigg%5D%20-%20%5Cfrac%7B3%7D%7B2%7D%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20x%5E%5Cbigg%7B%5Cfrac%7B2%7D%7B3%7D%7D%20%5Cbigg%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20C%20%5Cbigg%5D)
- Basic Power Rule:

- Simplify:

∴ we have found the answer.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e