Answer:
Bet
Step-by-step explanation:
It’s a simple one to write. There are many trios of integers (x,y,z) that satisfy x²+y²=z². These are known as the Pythagorean Triples, like (3,4,5) and (5,12,13). Now, do any trios (x,y,z) satisfy x³+y³=z³? The answer is no, and that’s Fermat’s Last Theorem.
On the surface, it seems easy. Can you think of the integers for x, y, and z so that x³+y³+z³=8? Sure. One answer is x = 1, y = -1, and z = 2. But what about the integers for x, y, and z so that x³+y³+z³=42?
That turned out to be much harder—as in, no one was able to solve for those integers for 65 years until a supercomputer finally came up with the solution to 42. (For the record: x = -80538738812075974, y = 80435758145817515, and z = 12602123297335631. Obviously.)
Distribute the “-3” to both n&-3 —> -3n+9 then your left with -5 and subtract 9-5
-3n+4
Hope this helps:)
Answer:
(5,1)
Step-by-step explanation:
In general, the average rate of change of f (x) on the interval a, b is given by f(b) – f(a) / b – a. The average rate of alteration of a function, f (x) on an interval is well-defined to be the variance of the function values at the endpoints of the interim divided by the difference in the x values at the endpoints of the interval. this is also known as the difference quotient that tells how on average, the y values of a function are changing in connection to variations in the x values. A positive or negative rate of change is applicable which match up to an increase or decrease in the y value among the two data points. It is called zero rate of change when a quantity does not change over time.
Answer:
There are two real roots because b²>4ac
in the equation, b²= 9² = 81.
4ac = 4×-4×-12= 72